Hodgkin Disease

What is cancer?

The body is made up of trillions of living cells. Normal body cells grow, divide to make new cells, and die in an orderly way. During the early years of a person’s life, normal cells divide faster to allow the person to grow. Once the person becomes an adult, most cells divide only to replace worn-out or dying cells or to repair injuries.

Cancer begins when cells in a part of the body start to grow out of control. There are many kinds of cancer, but they all start because of out-of-control growth of abnormal cells.

Cancer cell growth is different from normal cell growth. Instead of dying, cancer cells continue to grow and form new, abnormal cells. In most cases the cancer cells form a tumor. Cancer cells can also invade (grow into) other tissues, something that normal cells can’t do. Growing out of control and invading other tissues are what makes a cell a cancer cell.

Cells become cancer cells because of damage to DNA. DNA is in every cell and directs all its actions. In a normal cell, when DNA is damaged the cell either repairs the damage or the cell dies. In cancer cells, the damaged DNA is not repaired, but the cell doesn’t die like it should. Instead, this cell goes on making new cells that the body does not need. These new cells will all have the same damaged DNA as the first abnormal cell does.

People can inherit damaged DNA, but most often the DNA damage is caused by mistakes that happen while the normal cell is reproducing or by something in our environment. Sometimes the cause of the DNA damage is something obvious, like cigarette smoking. But often no clear cause is found.

Cancer cells often travel to other parts of the body, where they begin to grow and form new tumors. This process is called metastasis. It happens when the cancer cells get into the bloodstream or lymph vessels of our body.
No matter where a cancer may spread, it is named (and treated) based on the place where it started. For example, breast cancer that has spread to the liver is still breast cancer, not liver cancer. Likewise, prostate cancer that has spread to the bones is still prostate cancer, not bone cancer.

Different types of cancer can behave very differently. They grow at different rates and respond to different treatments. That is why people with cancer need treatment that is aimed at their particular kind of cancer.

Not all tumors are cancerous. Tumors that aren’t cancer are called benign. Benign tumors can cause problems – they can grow large and press on healthy organs and tissues. But they can’t grow into (invade) other tissues. Because they can’t invade, they also can’t spread to other parts of the body (metastasize). These tumors are rarely life threatening.

What is Hodgkin disease?

Hodgkin disease (Hodgkin lymphoma) is a type of lymphoma, a cancer that starts in white blood cells called lymphocytes. Lymphocytes are part of the immune system. There are 2 kinds of lymphomas:

- Hodgkin disease (named after Dr. Thomas Hodgkin, who first recognized it)
- Non-Hodgkin lymphoma

These types of lymphomas differ in how they behave, spread, and respond to treatment, so it is important to tell them apart. Doctors can usually tell the difference between them by looking at the cancer cells under a microscope or by using sensitive lab tests.

Both children and adults can develop Hodgkin disease. This document discusses treatment in both groups.

For information on non-Hodgkin lymphoma, see the American Cancer Society document Non-Hodgkin Lymphoma.

The lymph system and lymphoid tissue

To understand what Hodgkin disease is, it helps to know how the lymph system works.

The lymph system (also known as the lymphatic system) is part of the immune system, which helps fight infections and some other diseases. It also helps fluids move in the body. The lymph system is composed mainly of:

- **Lymphoid tissue**: includes the lymph nodes and related organs (see below) that are part of the immune and blood-forming systems
• **Lymph**: a clear fluid that travels through the lymph system, carrying waste products and excess fluid from tissues, as well as lymphocytes and other immune system cells

• **Lymphatic vessels**: small tubes, similar to blood vessels, through which lymph travels to different parts of the lymph system

Lymphocytes

Lymphoid tissue is made up mainly of cells called *lymphocytes*, a type of white blood cell. The 2 major types of lymphocytes are B lymphocytes (B cells) and T lymphocytes (T cells). Normal B cells and T cells have different jobs.

• **B lymphocytes**: B cells help protect the body from germs (bacteria and viruses) by making proteins called *antibodies*. The antibodies attach to the germs, marking them for destruction by other parts of the immune system. Almost all cases of Hodgkin disease start in B lymphocytes.

• **T lymphocytes**: There are several types of T cells, and each has a special job. Some T cells directly destroy certain kinds of bacteria or cells infected with viruses or fungi. Other types of T cells play a role in either boosting or slowing the activity of other immune system cells.

Organs that have lymphoid tissue

Because lymphoid tissue is in many parts of the body, Hodgkin disease can start almost anywhere.
The major sites of lymphoid tissue are:

Lymph nodes: Lymph nodes are bean-sized collections of lymphocytes and other immune system cells throughout the body, including inside the chest, abdomen, and pelvis. They can sometimes be felt as small lumps under the skin in the neck, under the arms, and in the groin. Lymph nodes are connected to each other by a system of lymphatic vessels.

Lymph nodes get bigger when they fight an infection. Lymph nodes that grow because of infection are called *reactive* or *hyperplastic* nodes. These often hurt when they are touched. People with sore throats or colds might have enlarged neck lymph nodes. An enlarged lymph node is not always a sign of a serious problem, but it can be a sign of Hodgkin disease. See the section “Signs and symptoms of Hodgkin disease” for more information.

Spleen: The spleen is an organ under the lower part of the rib cage on the left side of the body. The spleen makes lymphocytes and other immune system cells to help fight infection. It also stores healthy blood cells and filters out damaged blood cells, bacteria, and cell waste.
Bone marrow: The bone marrow is the spongy tissue inside certain bones, which is where new white blood cells (including some lymphocytes), red blood cells, and platelets are made.

Thymus: The thymus is a small organ behind the upper part of the breastbone and in front of the heart. It is important in the development of T lymphocytes.

Adenoids and tonsils: These are collections of lymphoid tissue in the back of the throat. They help make antibodies against germs that are breathed in or swallowed.

Digestive tract: The stomach, intestines, and many other organs also have lymphoid tissue.

Start and spread of Hodgkin disease

Because lymphoid tissue is in many parts of the body, Hodgkin disease can start almost anywhere. Most often it starts in lymph nodes in the upper part of the body. The most common sites are in the chest, in the neck, or under the arms.

Hodgkin disease most often spreads through the lymph vessels in a stepwise fashion from lymph node to lymph node. Rarely, and late in the disease, it can invade the bloodstream and spread to other parts of the body, including the liver, lungs, and/or bone marrow.

Types of Hodgkin disease

Different types of Hodgkin disease are classified by how they look under the microscope. This is important because types of Hodgkin disease may grow and spread differently and may be treated differently. The 2 main types are:

- Classic Hodgkin disease (which has several subtypes)
- Nodular lymphocyte predominant Hodgkin disease

All types of Hodgkin disease are malignant (cancerous) because as they grow they can invade and destroy normal tissue and spread to other tissues.

Classic Hodgkin disease

Classic Hodgkin disease (HD) accounts for about 95% of all cases of Hodgkin disease in developed countries.

The cancer cells in classic HD are called *Reed-Sternberg cells* (after the 2 doctors who first described them). These cells are usually an abnormal type of B lymphocyte. Reed-Sternberg cells are much larger than normal lymphocytes and also look different from the cells of non-Hodgkin lymphomas and other cancers.
The enlarged lymph nodes in classic HD usually have a small number of Reed-Sternberg cells and a large number of surrounding normal immune cells. It is mainly these other immune cells that account for the enlarged lymph nodes.

Classic HD has 4 subtypes:

Nodular sclerosis Hodgkin disease: This is the most common type of Hodgkin disease in developed countries, accounting for about 60% to 80% of cases. It is most common in teens and young adults, but it can occur in people of any age. It tends to start in lymph nodes in the neck or chest.

Mixed cellularity Hodgkin disease: This is the second most common type (15% to 30%) and is seen mostly in older adults (although it can occur at any age). It can start in any lymph node but most often occurs in the upper half of the body.

Lymphocyte-rich Hodgkin disease: This subtype accounts for about 5% of Hodgkin disease cases. It usually occurs in the upper half of the body and is rarely found in more than a few lymph nodes.

Lymphocyte-depleted Hodgkin disease: This is the least common form of Hodgkin disease, making up less than 1% of cases. It is seen mainly in older people. The disease is more likely to be advanced when first found, in lymph nodes in the abdomen as well as in the spleen, liver, and bone marrow.

Nodular lymphocyte predominant Hodgkin disease

Nodular lymphocyte predominant Hodgkin disease (NLPHD) accounts for about 5% of Hodgkin disease. The cancer cells in NLPHD are large cells called *popcorn cells* (because they look like popcorn), which are variants of Reed-Sternberg cells.

NLPHD usually starts in lymph nodes in the neck and under the arm. It can occur in people of any age, and is more common in men than in women.

What are the key statistics about Hodgkin disease?

The American Cancer Society’s estimates for Hodgkin disease in the United States for 2015 are:

- About 9,050 new cases (3,950 in females and 5,100 in males)
- About 1,150 deaths (490 females, 660 males) from this cancer

Hodgkin disease can occur in both children and adults. It is most common in early adulthood (ages 15 to 40, especially in a person’s 20s), where it is mostly of the nodular sclerosis subtype, and in late adulthood (after age 55), where the mixed cellularity
subtypes are more common. Hodgkin disease is rare in children younger than 5 years of age. About 10% to 15% of cases are diagnosed in children and teenagers.

Because of advances in treatment, survival rates have improved in the past few decades. The 1-year relative survival rate for all patients diagnosed with Hodgkin disease is now about 92%; the 5-year and 10-year survival rates are about 85% and 80%, respectively. Certain factors such as the stage (extent) of Hodgkin disease and a person’s age affect these rates. For more detailed survival rates based on the stage of disease, as well as a discussion of other factors that affect survival, see the section “Survival rates for Hodgkin disease by stage.”

What are the risk factors for Hodgkin disease?

A risk factor is anything that affects your chance of getting a disease such as cancer. Different cancers have different risk factors. Some cancer risk factors, like smoking, can be changed. Others, like a person’s age or family history, can’t be changed.

Scientists have found a few risk factors that make a person more likely to develop Hodgkin disease (although it’s not always clear why these factors increase risk). But having a risk factor, or even several, does not mean that you will definitely get the disease. And many people who get the disease may have few or no known risk factors. Even if a person with Hodgkin disease has one or more risk factors, it is often very hard to know how much these factors might have contributed to the lymphoma.

Epstein-Barr virus infection/mononucleosis

People who have had infectious mononucleosis (sometimes called mono for short), an infection caused by the Epstein-Barr virus (EBV), have an increased risk of Hodgkin disease. Although the risk is higher than for people who have not had mono, the overall risk is still very small.

The exact role of EBV in the development of Hodgkin disease is not clear. Many people are infected with EBV, but very few develop Hodgkin disease. Parts of the virus are found in Reed-Sternberg cells in about 1 out of 3 patients with Hodgkin disease. But the other people with Hodgkin disease have no signs of EBV in their cancer cells.

Age

People of any age can be diagnosed with Hodgkin disease, but it is most common in early adulthood (ages 15 to 40, especially in a person’s 20s) and in late adulthood (after age 55).
Gender

Hodgkin disease occurs slightly more often in males than in females.

Geography

Hodgkin disease is most common in the United States, Canada, and northern Europe, and is least common in Asian countries.

Family history

Brothers and sisters of young people with this disease have a higher risk for Hodgkin disease. The risk is very high for an identical twin of a person with Hodgkin disease. But a family link is still uncommon – most people with Hodgkin disease do not have a family history of it.

It’s not clear why family history might increase risk. It might be because family members have similar childhood exposures to certain infections (such as Epstein-Barr virus), inherited gene changes that make them more likely to get Hodgkin disease, or some combination of these factors.

Socioeconomic status

The risk of Hodgkin disease is greater in people with a higher socioeconomic background. The reason for this is not clear. One theory is that children from more affluent families might be exposed to some type of infection (such as Epstein-Barr virus) later in life than children from less affluent families, which might somehow increase their risk.

HIV infection

The risk of Hodgkin disease is increased in people infected with HIV, the virus that causes AIDS.

Do we know what causes Hodgkin disease?

Scientists have found some risk factors that make a person more likely to get Hodgkin disease, but it’s not always clear exactly how these factors might increase risk.

For example, some researchers think that infection with the Epstein-Barr virus may sometimes cause DNA changes in B lymphocytes, leading to the development of Reed-Sternberg cells, which are the cancer cells in Hodgkin disease.
Normal human cells grow and function mainly based on the information contained in each cell’s DNA. DNA is the chemical that makes up our genes — the instructions for how our cells function. We look like our parents because they are the source of our DNA. But DNA affects more than how we look.

Some genes control when cells grow, divide into new cells, and die. Certain genes that help cells grow, divide, and stay alive are called oncogenes. Others that slow down cell division or cause cells to die at the right time are called tumor suppressor genes. Cancers can be caused by DNA changes that turn on oncogenes or turn off tumor suppressor genes.

Scientists have found many gene changes in Reed-Sternberg cells that help the cells grow and divide or live longer than they should. Reed-Sternberg cells also make substances called cytokines, which attract many other cells into the lymph node, enlarging it. In turn, these non-cancerous cells release substances that promote growth of the Reed-Sternberg cells.

Despite these advances, scientists do not yet know what sets off these processes. An abnormal reaction to the Epstein-Barr virus or to other infections may be the trigger in some cases. But more research is needed to understand what causes Hodgkin disease.

Can Hodgkin disease be prevented?

Few of the known risk factors for Hodgkin disease can be changed, so it is not possible to prevent most cases of the disease at this time.

Infection with HIV, the virus that causes AIDS, is known to increase risk, so one way to limit your risk is to avoid known risk factors for HIV, such as intravenous drug use or unprotected sex with many partners. You can read more about HIV infection in our document *HIV, AIDS, and Cancer*.

Another risk factor for Hodgkin disease is infection with the Epstein-Barr virus (the cause of infectious mononucleosis, or mono), but there is no known way to prevent this infection.

Can Hodgkin disease be found early?

At this time, there are no widely recommended screening tests for this cancer. (Screening is testing for cancer in people without any symptoms.) Still, in some cases Hodgkin disease can be found early.

The best way to find Hodgkin disease early is to pay attention to possible symptoms. The most common symptom is enlargement of one or more lymph nodes, causing a lump or bump under the skin which is usually not painful. This is most often on the side of the neck, in the armpit, or in the groin. More often this is caused by something like an
infection, rather than Hodgkin disease, but it is important to have such lumps checked by your doctor.

Other symptoms can include fever that doesn’t go away, drenching night sweats that often require changing bed sheets or night clothes, and unexplained weight loss. Severe and constant itching can be another symptom of Hodgkin disease. However, very early in the disease, many people with Hodgkin disease may not have any symptoms.

Careful, regular medical checkups may be helpful for people with known risk factors for Hodgkin disease, such as a strong family history. These people do not often get Hodgkin disease, but they (and their doctors) should know about any possible symptoms and signs they might have.

Signs and symptoms of Hodgkin disease

You or your child can have Hodgkin disease and feel perfectly well. But Hodgkin disease can often cause symptoms.

Lump(s) under the skin

The most common symptom of Hodgkin disease is a lump in the neck, under the arm, or in the groin, which is an enlarged lymph node. Although it doesn’t usually hurt, the area may become painful after drinking alcohol. The lump might grow larger over time, or new lumps might appear near it (or even in other parts of the body).

But Hodgkin disease is not the most common cause of lymph node swelling. Most enlarged lymph nodes, especially in children, are caused by an infection. If this is the cause, the node should return to its normal size a couple of weeks or months after the infection goes away.

Other cancers can also cause swollen lymph nodes. If you have an enlarged lymph node, especially if you haven’t had a recent infection, it’s best to see your doctor so that the cause can be found and treated without delay, if needed.

General (non-specific) symptoms

Some people with Hodgkin disease have what are known as *B symptoms*:

- Fever (which can come and go over several days or weeks) without an infection
- Drenching night sweats
- Weight loss without trying (at least 10% of body weight over 6 months)
These symptoms can help find Hodgkin disease, but they are also important in determining the disease’s stage and prognosis (outlook) (see “How is Hodgkin disease staged?”).

Other possible symptoms of Hodgkin disease include:

- Itching skin
- Feeling tired
- Loss of appetite

Sometimes the only symptom might be feeling tired all the time.

Cough, trouble breathing, chest pain

If Hodgkin disease affects lymph nodes inside the chest, the swelling of these nodes might press on the windpipe (trachea) and make you cough or even have trouble breathing, especially when lying down. Some people might have pain behind the breast bone.

Having one or more of the symptoms above does not mean you definitely have Hodgkin disease. In fact, many of these symptoms are more likely to be caused by other conditions, such as an infection. Still, if you or your child has any of these symptoms, have them checked by a doctor so that the cause can be found and treated, if needed.

How is Hodgkin disease diagnosed?

Most people with Hodgkin disease see their doctor because they have certain symptoms, or because they just don’t feel well and go in for a checkup.

If a person has signs or symptoms that suggest Hodgkin disease, exams and tests are done to find out for sure and, if so, to determine the exact type.

Medical history and physical exam

If symptoms suggest you or your child might have Hodgkin disease, your doctor will want to get a thorough medical history, including information about symptoms, possible risk factors, family history, and other medical conditions.

Next, the doctor will do a physical exam, paying special attention to the lymph nodes and other areas of the body that might be affected, including the spleen and liver. Because infections are the most common cause of enlarged lymph nodes, especially in children, the doctor will look for an infection in the part of the body near any swollen lymph nodes.
The doctor also might order blood tests to look for signs of infection or other problems. If the doctor suspects that Hodgkin disease might be causing the symptoms, he or she will recommend a biopsy of the area.

Biopsies

Many of the symptoms of Hodgkin disease are actually more likely to be caused by something else. For example, enlarged lymph nodes are more often caused by infections than by Hodgkin disease. Because of this, doctors often wait a few weeks to see if they shrink on their own as the infection goes away. Antibiotics may also be prescribed to see if they cause the nodes to shrink.

If the nodes don’t shrink or continue to grow, a lymph node (or a small piece of a node) is removed to be looked at under the microscope and for other lab tests. This procedure, called a *biopsy*, is needed to be sure of the diagnosis. If it is Hodgkin disease, the biopsy can also tell what type it is.

Types of biopsies

There are different types of biopsies. Doctors choose the best one based on the situation.

Excisional or incisional biopsy: This is the preferred and most common type of biopsy for an enlarged lymph node. The doctor cuts through the skin to remove the lymph node. If the doctor removes the entire lymph node, it is called an *excisional biopsy*. If a small part of a larger tumor or node is removed, it is called an *incisional biopsy*.

If the node is just under the skin, this is a fairly simple operation that can sometimes be done with numbing medicine (local anesthesia). But if the node is inside the chest or abdomen, the patient is sedated or given general anesthesia (where he or she is in a deep sleep). This type of biopsy almost always provides enough of a tissue sample to make a diagnosis of Hodgkin disease and to tell the exact type.

Fine needle aspiration (FNA) or core needle biopsy: In an FNA biopsy, the doctor uses a very thin, hollow needle attached to a syringe to withdraw (aspirate) a small amount of fluid and tiny bits of tissue from a lymph node or an organ in the body. For a core needle biopsy, the doctor uses a larger needle to remove a slightly larger piece of tissue.

If the enlarged node is just under the skin, the doctor can aim the needle while feeling the node. If a tumor is deep inside the body, the doctor can guide the needle using a computed tomography (CT) scan or ultrasound (see discussion of imaging tests in “How is Hodgkin disease staged?”).

A needle biopsy does not require an incision, but in many cases it might not remove enough of a sample to diagnose Hodgkin disease (or to determine which type it is). Most doctors do not use needle biopsies (especially FNA biopsies) to diagnose Hodgkin disease. But if the doctor suspects that your lymph node swelling is caused by an
infection or by the spread of cancer from another organ (such as the breast, lungs, or thyroid), a needle biopsy might be the first type of biopsy done. An excisional biopsy may still be needed to diagnose Hodgkin disease, even after a needle biopsy has been done.

If Hodgkin disease has already been diagnosed, needle biopsies are sometimes used to check areas in other parts of the body that might be Hodgkin disease spreading or coming back after treatment.

Bone marrow aspiration and biopsy: These tests are not used to diagnose Hodgkin disease, but they may be done after the diagnosis is made to see if Hodgkin disease is in the bone marrow. They are described in more detail in the section “How is Hodgkin disease staged?”

Lab tests of biopsy samples

All biopsy samples are looked at under a microscope by a pathologist (a doctor specially trained to recognize cancer cells), who looks at the size and shape of the cells and determines if any of them are Reed-Sternberg cells. The pathologist also looks at how the cells are arranged, which could point to the type of Hodgkin disease.

Because diagnosing Hodgkin disease can be tricky, it helps if the pathologist specializes in diseases of the blood. Sometimes the first biopsy does not give a definite answer and more biopsies are needed.

Looking at the samples under the microscope is often enough to diagnose Hodgkin disease (and what type it is), but sometimes further lab tests are needed.

Immunohistochemistry: In this test, a part of the biopsy sample is treated with special antibodies (man-made versions of immune system proteins) that will attach only to certain molecules on the surface of cells. These antibodies cause color changes that can be seen under a microscope. This test can show certain proteins, such as CD15 and CD30, on the surface of the Reed-Sternberg cells. These are typically found in classic Hodgkin disease. Tests for other proteins may point to nodular lymphocyte predominant Hodgkin disease, to non-Hodgkin lymphoma rather than Hodgkin disease, or to other diseases entirely.

How is Hodgkin disease staged?

Once Hodgkin disease is diagnosed, tests will be done to determine the stage (extent of spread) of the disease. The treatment and prognosis (outlook) for a person with Hodgkin disease depend to some extent on both the type and the stage of the disease. If you have any questions about the stage of your lymphoma or how it affects your treatment, be sure to ask your doctor.
Hodgkin disease generally starts in the lymph nodes. If it spreads, it is usually to another set of nearby lymph nodes. It can invade (grow into) nearby organs as well. Rarely, Hodgkin disease will start in an organ other than lymph nodes, such as a lung.

Staging is based on:

- Your medical history (if you have certain symptoms)
- The physical exam
- Biopsies
- Imaging tests, which typically include a chest x-ray, CT (computed tomography) scan of the chest/abdomen/pelvis, and PET (positron emission tomography) scan
- Blood tests
- Bone marrow aspiration and biopsy (sometimes but not always done)

The medical history/physical exam and biopsies are discussed in the section “How is Hodgkin disease diagnosed?”

Imaging tests used to stage Hodgkin disease

Imaging tests use x-rays, sound waves, magnetic fields, or radioactive particles to make pictures of the inside of the body. Imaging tests may be done for a number of reasons, including:

- To look for possible causes of certain symptoms, such as enlarged lymph nodes in the chest
- To help determine the stage of Hodgkin disease
- To help show if treatment is working
- To look for possible signs of cancer coming back after treatment

Chest x-ray

Hodgkin disease often enlarges lymph nodes in the chest, which can usually be seen on a plain chest x-ray.

Computed tomography (CT) scan

The CT scan uses x-rays to make detailed cross-sectional images of the body. Unlike a regular x-ray, CT scans can show the detail in soft tissues (such as internal organs). This
scan can help tell if any lymph nodes or organs in your body are enlarged. CT scans are useful for looking for Hodgkin disease in the neck, chest, abdomen, and pelvis.

Before the test, you might be asked to drink a contrast solution and/or get an intravenous (IV) injection of a contrast dye to better outline abnormal areas in the body. You might need an IV line through which the contrast dye is injected. The injection can cause some flushing (a feeling of warmth, especially in the face). Some people are allergic to the dye and get hives or a flushed feeling or, rarely, have more serious reactions like trouble breathing and low blood pressure. Be sure to tell the doctor if you or your child has any allergies or has ever had a reaction to any contrast material used for x-rays.

A CT scanner has been described as a large donut, with a narrow table that slides in and out of the middle opening. You need to lie still on the table while the scan is being done. CT scans take longer than regular x-rays, and some people might feel a bit confined by the ring while the pictures are being taken. Doctors give some children medicine to help keep them calm or even asleep during the test.

CT-guided needle biopsy: A CT scan can also be used to guide a biopsy needle into a suspicious area. For this procedure, a person lies on the CT scanning table while the doctor moves a biopsy needle through the skin and toward the area. CT scans are repeated until the needle is in the right place. A biopsy sample is then removed and sent to the lab to be looked at under a microscope.

Magnetic resonance imaging (MRI) scan

This test is rarely used in Hodgkin disease, but if the doctor is concerned about spread to the spinal cord or brain, MRI is very useful for looking at these areas.

Like CT scans, MRI scans make detailed images of soft tissues in the body. But MRI scans use radio waves and strong magnets instead of x-rays. A contrast material called gadolinium is often injected into a vein before the scan to show details better. This contrast material usually does not cause allergic reactions.

MRI scans take longer than CT scans, often up to an hour. You might have to lie inside a narrow tube, which is confining and can be distressing to some people. Some children might need sedation. Newer, more open MRI machines might be another option. The MRI machine makes loud buzzing and clicking noises that some people might find disturbing. Some places give you headphones or earplugs to help block this noise out.

Positron emission tomography (PET) scan

For a PET scan, a form of radioactive sugar (known as fluorodeoxyglucose or FDG) is injected into the blood. The amount of radioactivity used is very low and will pass out of the body within a day or so. Because cancer cells in the body are growing quickly, they absorb large amounts of the sugar. You then lie a table in the PET scanner for about 30
minutes while a special camera creates a picture of areas of radioactivity in the body. The picture is not detailed like a CT or MRI scan, but it can provide helpful information about your whole body.

PET scans can be used for many reasons in a person with Hodgkin disease:

- They can help show if an enlarged lymph node contains Hodgkin disease.
- They can help spot small areas in the body that might be lymphoma, even if the area looks normal on a CT scan.
- They can help tell if Hodgkin disease is responding to treatment. Some doctors will repeat the PET scan after a few courses of chemotherapy. If it is working, the lymph nodes will no longer take up the radioactive sugar.
- They can be used after treatment in helping decide whether an enlarged lymph node still contains cancer or is just scar tissue.

Doctors often use a machine that combines the PET scan with a CT scan (known as a PET/CT scan). This lets the doctor compare areas of higher radioactivity on the PET scan with the more detailed appearance of that area on the CT. PET/CT scans often can help pinpoint the areas of lymphoma better than a CT alone.

Gallium scan

This test can find tumors that might be Hodgkin disease in lymph nodes and other organs. Gallium scans are not used as much now as in the past, because most doctors do a PET scan instead. This test can still sometimes be useful in finding areas of lymphoma that the PET scan might miss. It can also help tell infections from lymphomas when the diagnosis is not clear.

During this test, a small dose of radioactive gallium is injected into a vein. It is attracted to lymph tissue in the body. A few days later a special camera is used to detect the radioactivity, showing the location of the gallium.

Bone scan

This test is not usually done unless a person is having bone pain or has lab test results that suggest the Hodgkin disease might have reached the bones.

A different radioactive substance (technetium) is used for a bone scan. After it is injected into a vein, it travels to damaged areas of the bone. A special camera can then detect the radioactivity. Hodgkin disease sometimes causes bone damage, which may be picked up on a bone scan. But bone scans can’t show the difference between cancers and non-cancerous problems, so further tests might be needed.
Other tests

Blood tests

Blood tests aren’t part of the formal staging system for Hodgkin disease, but they can help your doctor get a sense of how advanced the disease is and how well you might tolerate certain treatments.

The complete blood count (CBC) is a test that measures the levels of different cells in the blood. Hodgkin disease cells don’t show up in the blood, but a CBC can sometimes reveal signs of Hodgkin disease. For example, anemia (not having enough red blood cells) can be a sign of more advanced Hodgkin disease. A high white blood cell count is another possible sign, although it can also be caused by infection.

Another test called an erythrocyte sedimentation rate (ESR) can help measure how much inflammation is in the body. It can be elevated in some people with Hodgkin disease.

Blood tests might also be done to check liver and kidney function and to look for signs that the cancer might have reached the bones.

Your doctor might also suggest other blood tests to look for signs of certain infections:

- HIV test: if you have abnormal symptoms that might be related to HIV infection
- Hepatitis B virus test: if your doctor plans on using the drug rituximab (Rituxan) in your treatment, which could cause problems if you have this infection

Bone marrow aspiration and biopsy

If Hodgkin disease has been diagnosed, these tests are done sometimes to tell if it has reached the bone marrow. The bone marrow aspiration and biopsy are usually done at the same time. The samples are taken from the back of the pelvic (hip) bone, although in some cases they may be taken from other bones.

In bone marrow aspiration, you lie on a table (either on your side or on your belly). After cleaning the skin over the hip, the doctor numbs the area and the surface of the bone by injecting a local anesthetic, which may cause a brief stinging or burning sensation. A thin, hollow needle is then inserted into the bone, and a syringe is used to suck out a small amount of liquid bone marrow. Even with the anesthetic, most patients still have some brief pain when the marrow is removed.

A bone marrow biopsy is usually done just after the aspiration. A small piece of bone and marrow is removed with a slightly larger needle that is pushed down into the bone. The biopsy may also cause some brief pain. Once the biopsy is done, pressure will be applied to the site to help stop any bleeding.
Most children having a bone marrow aspiration and biopsy either receive medicine to
make them drowsy or have general anesthesia so they are asleep.

The samples are then sent to a lab, where they are viewed under a microscope to look for
signs of Hodgkin disease.

Tests of heart and lung function

These tests are not used to help stage Hodgkin disease, but they might be done if certain
chemotherapy drugs that could affect the heart or the lungs are going to be used.

- Heart function may be checked with an echocardiogram (an ultrasound of the heart)
or a MUGA scan.
- Lung function may be checked with pulmonary function tests, in which you breathe
into a tube connected to a machine.

Cotswold staging system

A staging system is a way for the cancer care team to sum up the extent of a cancer’s
spread. The staging system for Hodgkin disease is known as the *Cotswold system*, which
is a modification of the older Ann Arbor system. It has 4 stages, labeled I, II, III, and IV.

If Hodgkin disease affects an organ outside of the lymph system, the letter E is added to
the stage (for example, stage IE or IIE). If it involves the spleen, the letter S is added.

Stage I: Either of the following means that the disease is stage I:

- Hodgkin disease is found in only 1 lymph node area or lymphoid organ such as the
thymus (I).
- The cancer is found only in 1 area of a single organ outside the lymph system (IE).

Stage II: Either of the following means that the disease is stage II:

- Hodgkin disease is found in 2 or more lymph node areas on the same side of (above
or below) the diaphragm — the muscle beneath the lungs that separates the chest and
abdomen (II).
- The cancer extends locally from one lymph node area into a nearby organ (IIE).

Stage III: Either of the following means that the disease is stage III:

- Hodgkin disease is found in lymph node areas on both sides of (above and below) the
diaphragm (III).
- Hodgkin disease is in lymph nodes above and below the diaphragm, and has also
spread to a nearby organ (IIIE), to the spleen (IIIS), or to both (IIIES).
Stage IV: Any of the following means that the disease is stage IV:

- Hodgkin disease has spread widely through 1 or more organs outside of the lymph system. Cancer cells may or may not be found in nearby lymph nodes.
- Hodgkin disease is found in organs in 2 distant parts of the body (and not in nearby lymph nodes).
- Hodgkin disease is in the liver, bone marrow, lungs (other than by growing there directly from another site), or cerebrospinal fluid (the liquid that surrounds the brain and spinal cord).

Other modifiers may also be used to describe the Hodgkin disease stage:

Bulky disease

This term is used to describe tumors in the chest that are at least $\frac{1}{3}$ as wide as the chest, or tumors in other areas that are at least 10 centimeters (about 4 inches) across. It is usually labeled by adding the letter X to the stage. Bulky disease may require more intensive treatment.

A vs. B

Each stage may also be assigned a letter (A or B). B is added (stage III B, for example) if a person has any of these “B symptoms”:

- Loss of more than 10% of body weight over the previous 6 months (without dieting)
- Unexplained fever of at least 100.4°F (38°C)
- Drenching night sweats

If a person has any B symptoms, it usually means the disease is more advanced, and more intensive treatment is often recommended. If no B symptoms are present, the letter A is added to the stage.

Resistant or recurrent Hodgkin disease

These terms are not part of the formal staging system, but doctors or nurses might use them to describe what is going on with the lymphoma in some cases.

The terms *resistant* or *progressive* disease are used when the disease does not go away or progresses (grows) while you are still being treated.

Recurrent or *relapsed* disease means that Hodgkin disease initially went away with treatment, but it has now come back. If Hodgkin disease returns, it may be in the same
place where it started or in another part of the body. This may occur shortly after treatment or years later.

Survival rates for Hodgkin disease by stage

Survival rates are often used by doctors as a standard way of discussing a person’s prognosis (outlook). Some people with Hodgkin disease may want to know the survival statistics for people in similar situations, while others may not find the numbers helpful, or might even not want to know them. If you do not want to see Hodgkin disease survival statistics, skip to the next section.

The rates below are based on the stage of the cancer *when it is first diagnosed*. When looking at survival rates, it’s important to understand that the stage of a cancer does not change over time, even if the cancer progresses. If a cancer comes back or spreads, the survival rates may be different from those shown below.

The 5-year survival rate is the percentage of patients who live *at least* 5 years after their cancer is diagnosed. Of course, many of these people live much longer than 5 years, and many are cured.

The numbers below are among the most current available. But to get 5-year survival rates, doctors have to look at people who were treated at least 5 years ago. Improvements in treatment since then might result in a better outlook for people now being diagnosed with these cancers.

The numbers below come from the National Cancer Institute’s SEER database, looking at more than 8,000 people diagnosed with Hodgkin disease between 1988 and 2001.

<table>
<thead>
<tr>
<th>Stage</th>
<th>5-year Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>About 90%</td>
</tr>
<tr>
<td>II</td>
<td>About 90%</td>
</tr>
<tr>
<td>III</td>
<td>About 80%</td>
</tr>
<tr>
<td>IV</td>
<td>About 65%</td>
</tr>
</tbody>
</table>

Survival rates are based on previous outcomes of large numbers of people who had the disease, but they can’t predict what will happen with any particular person. Many other factors could affect a person’s outlook, such as age and general health, how well the cancer responds to treatment, and other factors (see below). Your doctor can tell you how the numbers above might apply to you, as he or she knows your situation best.
Other prognostic factors

Along with the stage of the Hodgkin disease, other factors can affect a person’s prognosis (outlook). For example, some factors mean the disease is likely to be more serious and might prompt the doctor to give more intensive treatment:

- Having B symptoms or bulky disease
- Being older than 45
- Being male
- Having a high white blood cell count (above 15,000)
- Having a low red blood cell count (hemoglobin level below 10.5)
- Having a low blood lymphocyte count (below 600)
- Having a low blood albumin level (below 4)
- Having a high erythrocyte sedimentation rate, or ESR (over 30 in someone with B symptoms, or over 50 for someone without B symptoms)

How is Hodgkin disease treated?

This information represents the views of the doctors and nurses serving on the American Cancer Society’s Cancer Information Database Editorial Board. These views are based on their interpretation of studies published in medical journals, as well as their own professional experience.

The treatment information in this document is not official policy of the Society and is not intended as medical advice to replace the expertise and judgment of your cancer care team. It is intended to help you and your family make informed decisions, together with your doctor.

Your doctor may have reasons for suggesting a treatment plan different from these general treatment options. Don’t hesitate to ask him or her questions about your treatment options.

General treatment information

After Hodgkin disease is staged, the cancer care team will discuss treatment options with you. Treatment for Hodgkin disease is based largely on the stage of the disease. But other factors, including a person’s age and general health, and the type and location of the disease, might also affect treatment options.
For almost all patients with Hodgkin disease, cure is the main goal. But treatment can have side effects that often don’t show up for many years. Because of this, doctors try to choose a treatment plan with the lowest risk of possible side effects.

Several types of treatment can be used for Hodgkin disease:

- Chemistry
- Radiation therapy
- Monoclonal antibodies
- High-dose chemotherapy and stem cell transplant

The 2 main ways of treating Hodgkin disease are chemotherapy and radiation therapy. Depending on the situation, one or both of these treatments might be used.

Monoclonal antibodies and high-dose chemotherapy with stem cell transplants may be used for certain patients, especially if other treatments haven’t worked. Except for biopsy and staging, surgery is rarely used to treat Hodgkin disease.

Based on your treatment options, you may have different types of doctors on your treatment team. These doctors may include:

- A hematologist: a doctor who treats disorders of the blood, including lymphomas.
- A medical oncologist: a doctor who treats cancer with medicines.
- A radiation oncologist: a doctor who treats cancer with radiation therapy.

Many other specialists might be part of your treatment team as well, including physician assistants, nurse practitioners, nurses, nutritionists, social workers, and other health professionals. See Health Professionals Associated With Cancer Care for more on this.

It is important to discuss all of your treatment options, including their goals and possible side effects, with your doctors to help make the decision that best fits your needs. In choosing a treatment plan, consider your health and the type and stage of the Hodgkin disease. It’s also very important to ask questions if you’re not sure about something. You can find some good questions to ask in the section “What should you ask your doctor about Hodgkin disease?”

If time allows, it is often a good idea to seek a second opinion. Getting a second opinion can give you more information and help you feel confident about the treatment plan that you choose. Your doctor should be willing to help you find another cancer doctor who can give you a second opinion.

The next few sections describe the types of treatments used for Hodgkin disease. This is followed by a discussion of the typical treatment options based on the stage of the disease.
(and other prognostic factors when these are important). Finally, treatment of Hodgkin disease in special circumstances, such as in children or during pregnancy, is discussed.

Chemotherapy for Hodgkin disease

Chemotherapy (chemo) is the use of drugs to kill cancer cells. Chemotherapy for Hodgkin disease is usually injected into a vein under the skin or taken as a pill. Chemo drugs enter the bloodstream and travel throughout the body to reach and destroy cancer cells wherever they may be.

Doctors give chemo in cycles, in which a period of treatment is followed by a rest period to give the body time to recover. Each cycle generally lasts for several weeks. Most chemo treatments are given on an outpatient basis (in the doctor’s office, clinic, or hospital outpatient department), but some may require a hospital stay.

The chemo regimens for Hodgkin disease combine several drugs because different drugs kill cancer cells in different ways. The combinations used to treat Hodgkin disease are often referred to by abbreviations. The most common regimen in the United States is a 4-drug combination called ABVD, which consists of:

- Adriamycin® (doxorubicin)
- Bleomycin
- Vinblastine
- Dacarbazine (DTIC)

Other common regimens include:

BEACOPP

- Bleomycin
- Etoposide (VP-16)
- Adriamycin (doxorubicin)
- Cyclophosphamide (Cytoxan®)
- Oncovin® (vincristine)
- Procarbazine
- Prednisone

Stanford V

- Doxorubicin (Adriamycin)
• Mechlorethamine (nitrogen mustard)
• Vincristine
• Vinblastine
• Bleomycin
• Etoposide
• Prednisone

Radiation is given after chemo in the Stanford V regimen, and it is sometimes given after
the ABVD or BEACOPP regimens as well.

Other chemo combinations can also be used for Hodgkin disease. Most use some of the
same drugs listed above, but they might include different combinations and be given on
different schedules.

Possible side effects

Chemo drugs attack cells that are dividing quickly, which is why they work against most
types of lymphoma cells. But other cells in the body, such as those in the bone marrow
(where new blood cells are made), the lining of the mouth and intestines, and the hair
follicles, also divide quickly. These cells are also likely to be affected by chemotherapy,
which can lead to side effects.

The side effects depend on the type and dose of drugs given and the length of time they
are taken. They can include:

• Hair loss
• Mouth sores
• Loss of appetite
• Nausea and vomiting
• Diarrhea

• Increased chance of infections (from having too few white blood cells)
• Easy bruising or bleeding (from having too few blood platelets)
• Fatigue (from having too few red blood cells)

These side effects are usually short-lived and go away after treatment is finished. If
serious side effects occur, the chemotherapy may have to be delayed or the doses
reduced.
There are often ways to lessen these side effects. For example, drugs are usually given to help prevent nausea and vomiting.

Infections can be very serious in people getting chemo. Drugs known as *growth factors*, such as G-CSF (Neupogen®) or GM-CSF (Leukine®), are sometimes given to help the body make more white blood cells and thus reduce the chance of infection. Antibiotics may also be given at the earliest sign of an infection, such as a fever.

If your white blood cell counts are very low during treatment, you can help reduce your risk of infection by carefully limiting your exposure to germs. During this time, your doctor may advise you to:

- Wash your hands often.
- Avoid fresh, uncooked fruits and vegetables and other foods that might carry germs.
- Avoid fresh flowers and plants because they may carry mold.
- Make sure other people wash their hands before they come in contact with you.
- Avoid large crowds and people who are sick.

If your platelet counts are very low, you may be given drugs or platelet transfusions to help protect against bleeding. Fatigue caused by anemia (very low red blood cell counts) can be treated with drugs or with red blood cell transfusions.

Late or long-term side effects: Some chemo drugs can have long-lasting side effects, some of which might not occur until months or years after treatment has ended. For example:

- Doxorubicin can damage the heart, so your doctor may order tests to check your heart function before and during treatment with this drug.
- Bleomycin can damage the lungs, so some doctors order tests of lung function (called *pulmonary function tests*) before starting patients on this drug.
- Some chemo drugs can increase the risk of getting a second type of cancer later in life (such as leukemia), especially in patients who also get radiation therapy.
- In children and young adults, some chemo drugs can also affect body growth and fertility (ability to have children) later on.

Long-term effects are discussed in more detail in the section “What happens after treatment for Hodgkin disease?”

Before starting chemo, ask your doctor to explain the possible side effects and the chances of having them.
Radiation therapy for Hodgkin disease

Radiation therapy uses high-energy rays (or particles) to destroy cancer cells. To treat Hodgkin disease, a carefully focused beam of radiation is delivered from a machine outside the body. This is known as external beam radiation.

Most often, radiation treatments are given 5 days a week for several weeks. Before the treatments start, the radiation team takes careful measurements to determine the dose needed and the correct angles for aiming the radiation beams. Each treatment is much like getting an x-ray, but the radiation is stronger. Each treatment lasts only a few minutes, although the setup time – getting you or your child into place – usually takes longer. The treatment is painless, but some younger children might still need to be sedated to make sure they don’t move during the treatment.

Radiation therapy is most useful when Hodgkin disease is only in one part of the body. For classic Hodgkin disease, radiation is often given after chemotherapy, especially when there is a large or bulky tumor mass (usually in the chest). Chemotherapy or radiation alone would probably not cure the disease, but both treatments together usually get rid of it. Radiation therapy can also be used by itself to treat some cases of nodular lymphocyte predominant Hodgkin disease.

Radiation therapy is often very good at killing Hodgkin disease cells. But over the years as it has become clear that chemotherapy is also effective, doctors have used less radiation because of the possible long-lasting side effects. Modern imaging tests can also pinpoint the sites of Hodgkin disease more precisely, which helps doctors aim the radiation only at the disease itself. Today, if radiation therapy is used, only the involved areas are treated with radiation to try to limit the side effects.

Involved site radiation therapy (ISRT)

Many doctors prefer this newer form of radiation therapy when treating Hodgkin disease. The radiation is aimed only at the lymph nodes that originally contained Hodgkin disease, as well as any nearby areas it extended into. This helps spare nearby normal tissues from getting radiation.

Involved field radiation therapy (IFRT)

This was the preferred form of radiation therapy for Hodgkin disease until recently, but it is now largely being replaced by ISRT. In this technique, only the lymph node regions that have Hodgkin disease are treated, but this includes larger treatment areas than ISRT does (which might expose some nearby organs to radiation).
Extended field radiation

In the past, radiation was given to the major lymph node areas that contained Hodgkin disease, as well as the surrounding “normal” lymph node areas, just in case the Hodgkin disease had spread, even though the doctors could not actually detect it in these areas. This is called *extended field radiation*.

- If the Hodgkin disease was in the upper body, radiation was given to the *mantle field*, which included lymph node areas in the neck, chest, and under the arms. Sometimes this was extended to also include lymph nodes in the upper abdomen.

- *Inverted Y field* radiation therapy included the lymph nodes in the upper abdomen, the spleen, and the lymph nodes in the pelvis.

- When inverted Y field radiation was given together with mantle field radiation, the combination was called *total nodal irradiation*.

Because nearly all patients with Hodgkin disease are now treated with chemotherapy, extended field radiation is seldom used any more.

Total body irradiation

People who are getting a stem cell transplant may get radiation to the whole body along with high-dose chemotherapy, to try to kill lymphoma cells throughout the body. For more information on this procedure, see the section “High-dose chemotherapy and stem cell transplant.”

Possible side effects

The side effects of radiation therapy depend on where the radiation is aimed.

Short-term side effects: Some possible temporary effects include:

- Skin changes similar to sunburn in the areas getting radiation
- Feeling tired
- Dry mouth
- Nausea
- Diarrhea

Radiation given to several areas, especially after chemotherapy, can lower blood cell counts and increase the risk of infections.
Long-term side effects: Radiation therapy can also have long-lasting effects. The most serious of these is the increased risk of another cancer in the part of the body that was exposed to radiation.

Radiation to the chest or neck can damage the thyroid gland, which can affect its ability to make thyroid hormone. This can lead to fatigue and weight gain. Treatment with thyroid hormone pills can help with this.

Radiation to the chest also increases the risk of heart disease (such as heart attacks) and lung problems, while radiation to the neck may increase the risk of stroke many years later.

In children, radiation that reaches the bones may slow their growth. Depending on where the radiation is given, this could result in deformities or a lack of growth to full height. Radiation to the lower part of the body in children and young adults might also affect fertility later in life.

To reduce the risk of side effects, doctors carefully calculate the exact dose of radiation needed and aim the radiation beams as accurately as they can. Shields might also be placed over nearby parts of the body to protect them from the radiation. In girls and young women, the ovaries might be moved out of the way with minor surgery before radiation is given to help preserve fertility.

For more information about long-lasting side effects, see the section “What happens after treatment for Hodgkin disease?” If you or your child is getting radiation therapy, ask your doctor about the possible long-term side effects.

To learn more about radiation therapy, see the Radiation Therapy section of our website or our document *Understanding Radiation Therapy: A Guide for Patients and Families*.

Monoclonal antibodies for Hodgkin disease

Antibodies are proteins made by your immune system to help fight infections. Man-made versions, called monoclonal antibodies (mAbs), can be designed to attack a specific target, such as a substance on the surface of lymphocytes (the cells in which Hodgkin disease starts).

Some mAbs are now being used to treat Hodgkin disease.

Brentuximab vedotin (Adcetris®): This drug is an anti-CD30 antibody attached to a chemotherapy drug. Hodgkin disease cells usually have the CD30 molecule on their surface. The antibody acts like a homing signal, bringing the chemo drug to the lymphoma cells, where it enters the cells and makes them die when they try to divide into new cells.

This drug has been shown to help many people whose Hodgkin disease has come back after other treatments, including a stem cell transplant, as well as people who can’t have a
Brentuximab is infused into a vein (IV) every 3 weeks. Common side effects include nerve damage (neuropathy), low blood cell counts, fatigue, fever, nausea and vomiting, infections, diarrhea, and cough. Rarely, serious side effects occur during infusions, such as trouble breathing and low blood pressure.

Rituximab (Rituxan®): This antibody attaches to a substance called CD20 found on some types of lymphoma cells, which seems to kill the lymphoma cell. Rituximab may be used to treat nodular lymphocyte predominant Hodgkin disease (NLPHD), often with chemotherapy and/or radiation therapy.

Rituximab is given as an IV infusion in the doctor’s office or clinic. When it is used by itself, it is usually given once a week for 4 weeks, which may then be repeated several months later. When it is combined with chemotherapy, it is most often given on the first day of each chemo cycle.

Common side effects are usually mild but can include chills, fever, nausea, rashes, fatigue, and headaches. Rarely, more severe side effects occur during infusions, such as trouble breathing and low blood pressure. Even if these symptoms occur during the first infusion, it is very unusual for them to recur with later doses. Rituximab can cause prior hepatitis B infections to become active again, sometimes leading to severe liver problems or even death. Your doctor will probably check your blood for signs of hepatitis before starting this drug. This drug can also increase the risk of certain infections for several months after the drug is stopped.

High-dose chemotherapy and stem cell transplant for Hodgkin disease

Stem cell transplants (SCTs) are sometimes used for hard-to-treat Hodgkin disease, such as disease that doesn’t go away completely after chemotherapy (chemo) and/or radiation or that comes back after treatment.

The doses of chemo drugs given to patients normally are limited by the side effects these drugs cause. Higher doses can’t be used, even if they might kill more cancer cells, because they would severely damage the bone marrow, where new blood cells are made.

A stem cell transplant lets doctors give higher doses of chemo (sometimes along with radiation therapy). This is because after getting high-dose chemo treatment, the patient receives a transplant of blood-forming stem cells to restore the bone marrow.

The blood-forming stem cells used for a transplant come either from the blood (for a peripheral blood stem cell transplant, or PBSCT) or from the bone marrow (for a bone marrow transplant, or BMT). Peripheral blood stem cells are obtained from a procedure similar to a blood donation, while bone marrow donation is usually done in an operating
room with the marrow donor under general anesthesia (in a deep sleep). Bone marrow
transplants were more common in the past, but they have largely been replaced by
PBSCTs.

Types of transplants

There are 2 main types of stem cell transplants. They use different sources of blood-
forming stem cells.

Autologous stem cell transplant

In this type of transplant, a patient’s own blood stem cells are removed from his or her
bone marrow or peripheral blood. They are collected several times in the weeks before
treatment. The cells are frozen and stored while the person gets treatment (high-dose
chemo and/or radiation) and then are given back to the patient’s bloodstream by IV. This
is the more common type of transplant for Hodgkin disease.

Allogeneic stem cell transplant

In this type of transplant, the blood stem cells come from someone else. The donor’s
tissue type (also known as the HLA type) needs to match the patient’s tissue type as
closely as possible to help prevent major problems with the transplant.

Usually the donor is a brother or sister if they have the same tissue type as the patient. If
there are no siblings who are a good match, the cells may come from an HLA-matched,
unrelated donor — a stranger who has volunteered to donate their cells.

Sometimes umbilical cord blood stem cells are used. These cells come from blood
drained from the umbilical cord and placenta after a baby is born, which is rich in blood
stem cells. These are more often a source of blood stem cells for transplants in children.

Regardless of the source, the stem cells are then frozen and stored until they are needed
for the transplant.

Allogeneic transplants may be more likely to rid the body of lymphoma cells, but they are
also more likely to cause serious complications that could be life-threatening. In treating
Hodgkin disease, an allogeneic transplant is generally used only if an autologous
transplant has already been tried without success.

Non-myeloablative transplant: This special type of allogeneic transplant may be an
option for some patients who wouldn’t be able to get a regular allogeneic transplant
because it would be too toxic. This type of transplant uses less chemo and radiation, so it
is also known as a *mini-transplant* or *reduced-intensity transplant*.

The lower doses of chemo and radiation do not completely destroy the cells in the bone
marrow. After treatment, the patient gets the allogeneic (donor) stem cells. These cells
establish a new immune system in the body, which sees the lymphoma cells as foreign and attacks them (called the *graft-versus-lymphoma effect*).

Even though it uses small doses of certain chemo drugs and low doses of total body radiation, this type of transplant can still sometimes work and have less serious side effects. In fact, some patients can receive a non-myeloablative transplant as an outpatient.

Doctors aren’t yet sure exactly how effective these types of transplants are for patients with Hodgkin disease, but studies are now being done to find out.

The transplant procedure

The patient may be admitted to the stem cell transplant unit of the hospital or get treatment as an outpatient, depending on a number of factors.

If the treatment is to be given in the hospital, the person is usually admitted the day before the high-dose chemo is to begin. He or she will usually stay in the hospital until the stem cells have started to make new blood cells again, which often takes several weeks.

If the transplant is done as an outpatient procedure, patients and families must be able to spot complications requiring their doctor’s attention. Unless they live close to the transplant center, they will be asked to stay someplace nearby.

Treatment starts with high-dose chemo and may include high-dose total body irradiation. The chemo and radiation treatments are meant to destroy the cancer cells, but they also kill the normal cells of the bone marrow and the immune system. Once treatment is complete, the new stem cells (autologous or allogeneic) are given through a vein, just like a blood transfusion. The stem cells then travel to the bone marrow. Usually within a couple of weeks after they have been infused, the stem cells begin making new white blood cells. This is later followed by new platelet and red blood cell production.

In the meantime, the person is at high risk for serious *infections* because of a low white blood cell count, as well as bleeding because of a low platelet count. During this time, blood and platelet transfusions and treatment with strong antibiotics are often used to help prevent or treat infections or bleeding problems.

In an allogeneic SCT, the person getting the transplant may also be given drugs to keep the new immune system from attacking the body (known as *graft-versus-host disease* or GVHD, which is described below).

Because of the high risk of serious infections right after treatment, patients usually stay in a special hospital room in protective isolation (where exposure to germs is kept to a minimum) until a measure of their white blood cells, the absolute neutrophil count (ANC), rises above a certain level.
Patients then typically make regular visits to the outpatient transplant clinic for about 6 months, after which their care may be shared with their regular doctors. At this point, they may only come back to the clinic for their regular exams or if they have symptoms that need to be checked.

Practical points

A stem cell transplant is a complex treatment that can cause life-threatening side effects. If the doctors think a person might benefit from a transplant, it should be done at a cancer center where the staff has experience with the procedure and with managing the recovery phase.

SCTs often require a long hospital stay and can be very expensive (costing well over $100,000). Because some insurance companies might view it as an experimental treatment, they may not pay for it. Even if the transplant is covered by your insurance, your co-pays or other costs could easily amount to many thousands of dollars. Find out what your insurer will cover before the transplant so you will have an idea of what you might have to pay.

Possible side effects

The possible side effects from a stem cell transplant are generally divided into early (short-term) and late (long-term) effects.

Early or short-term effects: The early complications and side effects are basically the same as those caused by any other type of high-dose chemotherapy (see the “Chemotherapy” section of this document), and can be severe. They can include:

- Low blood cell counts (with fatigue and increased risks of infection and bleeding)
- Nausea and vomiting
- Diarrhea
- Loss of appetite
- Mouth sores
- Hair loss

One of the most common and serious short-term effects is the increased risk of serious infections. Antibiotics are often given to try to prevent this. Other side effects, like low red blood cell and platelet counts, might require blood product transfusions or other treatments.

Late and long-term side effects: Some complications and side effects can last for a long time or occur many years after the transplant. These can include:
- Graft-versus-host disease, which occurs only in allogeneic transplants (see next paragraph)
- Menstrual changes, early menopause, and loss of fertility in female patients (caused by damage to the ovaries)
- Loss of fertility in male patients
- Damage to the thyroid gland, causing problems with metabolism
- Cataracts (damage to the lens of the eye that can affect vision)
- Damage to the lungs, causing shortness of breath
- Bone damage called *aseptic necrosis* (if damage is severe, the patient might need to have part of the affected bone and the joint replaced)
- Development of another cancer (such as leukemia) years later

Graft-versus-host disease (GVHD): This is one of the most serious complications of allogeneic (donor) stem cell transplants. It occurs because the immune system of the patient is replaced by the donor’s immune system. The donor immune system then may attack the patient’s own body tissues.

Symptoms of GVHD can include severe skin rashes, itching, mouth sores (which can affect eating), nausea, and severe diarrhea. Liver damage may cause yellowing of the skin and eyes (jaundice). The lungs may also be damaged. The patient may also tire easily and have muscle aches.

Sometimes GVHD can become disabling, and if it is severe enough, it can be life-threatening. Usually, immune-suppressing drugs can be used to help control GVHD, although they can have their own side effects.

On the positive side, the GVHD also leads to graft-versus-lymphoma activity. Lymphoma cells remaining after the chemo and radiation therapy are often killed by donor immune cells since the lymphoma cells are also seen as foreign by the donor’s immune system. Mild GVHD can be a good thing.

For more on stem cell transplants, see our document *Stem Cell Transplant (Peripheral Blood, Bone Marrow, and Cord Blood Transplants)*.

Clinical trials for Hodgkin disease

You may have had to make a lot of decisions since you’ve been told you (or your child) has Hodgkin disease. One of the most important decisions you will make is choosing which treatment is best. You might have heard about clinical trials being done for
Hodgkin disease, or maybe someone on your health care team has mentioned a clinical trial to you.

Clinical trials are carefully controlled research studies that are done with patients who volunteer for them. They are done to learn more about promising new treatments or procedures.

Clinical trials are one way to get state-of-the-art cancer treatment. Sometimes they may be the only way to get some newer treatments. They are also the best way for doctors to learn better ways to treat cancer. Still, they are not right for everyone.

If you would like to learn more about clinical trials that might be right for you (or your child), start by asking your doctor if your clinic or hospital conducts clinical trials. You can also call our clinical trials matching service for a list of studies that meet your medical needs. You can reach this service at 1-800-303-5691 or on our website at www.cancer.org/clinicaltrials. You can also get a list of current clinical trials by calling the National Cancer Institute (NCI) at 1-800-4-CANCER (1-800-422-6237) or by visiting the NCI clinical trials website at www.cancer.gov/clinicaltrials.

People have to meet certain requirements to take part in any clinical trial. If you (or your child) qualify for a clinical trial, you still decide whether or not to enter (enroll in) it. Older children, who can understand more, usually must also agree to take part in the clinical trial before the parents’ consent is accepted.

To learn more about clinical trials, see our document Clinical Trials: What You Need to Know.

Complementary and alternative therapies for Hodgkin disease

You might hear about ways to treat Hodgkin disease or relieve symptoms that your doctor hasn’t mentioned. Everyone from friends and family to social media groups and websites might offer ideas for what might help. These methods can include vitamins, herbs, and special diets, or other methods such as acupuncture or massage, to name a few.

What exactly are complementary and alternative therapies?

Not everyone uses these terms the same way, and they are used to refer to many different methods, so it can be confusing. We use complementary to refer to treatments that are used along with regular medical care. Alternative treatments are used instead of a doctor’s medical treatment.

Complementary methods: Most complementary treatment methods are not offered as cures for cancer. Mainly, they are used to help a person feel better. Some methods that are used along with regular treatment are meditation to reduce stress, acupuncture to help
relieve pain, or peppermint tea to relieve nausea. Some complementary methods are known to help, while others have not been tested. Some have been proven not be helpful, and a few have even been found to be harmful.

Alternative treatments: Alternative treatments may be offered as cancer cures. These treatments have not been proven safe and effective in clinical trials. Some of these methods may pose danger, or have life-threatening side effects. But the biggest danger in most cases is that you (or your child) may lose the chance to be helped by standard medical treatment. Delaying or interrupting medical treatments might give the cancer more time to grow and make it less likely that treatment will help.

Finding out more

It’s easy to see why people with cancer (or with children who have cancer) think about alternative methods. You want to do all you can to fight the cancer, and the idea of a treatment with few or no side effects sounds great. Sometimes medical treatments like chemotherapy can be hard to take, or they may no longer be working. But the truth is that most alternative methods have not been tested and proven to work in treating cancer.

As you consider your options, here are 3 important steps you can take:

- Look for “red flags” that suggest fraud. Does the method promise to cure all or most cancers? Are you told not to have regular medical treatments? Is the treatment a “secret” that requires you to visit certain providers or travel to another country?
- Talk to your doctor or nurse about any method you are thinking about using.
- Contact us at 1-800-227-2345 or read our document *Complementary and Alternative Methods and Cancer* to learn more about complementary and alternative methods. You can also find out more in the Complementary and Alternative Medicine section of our website.

The choice is yours

You always have a say in your (or your child’s) treatment. If you want to use a non-standard treatment, learn all you can about the method and talk to your doctor about it. With good information and the support of your health care team, you may be able to safely use the methods that can help you while avoiding those that could be harmful.

Treating classic Hodgkin disease, by stage

This section sums up the treatment options for Hodgkin disease (HD) in adults, based on the stage of cancer. Treatment of the disease in children is slightly different from the treatment used for adults. Some of the differences in treating adults and children are
discussed in the section “Hodgkin disease in children.” For teens with HD who are fully grown, the treatment is usually the same as that for an adult.

Treatment options depend on many factors, including:

- The type of Hodgkin disease
- The stage (extent) of the Hodgkin disease
- Whether or not the disease is bulky (large)
- Whether the disease is causing certain symptoms
- Results of blood and other lab tests
- A person’s age
- A person’s general health

Based on these factors, a person’s treatment might be a little different from the general outline below.

Stages IA and IIA, favorable

This group includes HD that is only on one side of the diaphragm (above or below) and that doesn’t have any unfavorable factors. For example:

- It is not bulky
- It is not in several different lymph node areas
- It doesn’t cause any of the B symptoms
- It doesn’t cause an elevated erythrocyte sedimentation rate (ESR)

Treatment for most patients is chemotherapy (usually 2 to 4 cycles of the ABVD regimen or 8 weeks of the Stanford V regimen), followed by radiation to the initial site of the disease. Another option is chemotherapy alone (usually for 4 or 6 cycles) in selected patients.

Doctors often order a PET/CT scan after a few courses of chemo to see how well the treatment is working and to determine how much more treatment (if any) is needed.

If a person can’t have chemotherapy because of other health issues, radiation therapy alone may be an option.

For those who don’t respond to treatment, chemotherapy using different drugs or high-dose chemotherapy (and possibly radiation) followed by a stem cell transplant may be
recommended. Treatment with the monoclonal antibody brentuximab vedotin (Adcetris) may be another option.

Stages I and II, unfavorable

This group includes HD that is only on one side of the diaphragm (above or below), but that is bulky, is in several different areas, is causing any of the B symptoms, and/or is causing an elevated erythrocyte sedimentation rate (ESR).

Treatment is generally more intense than that for favorable disease. It typically starts with chemotherapy (usually ABVD for 4 to 6 cycles or other regimens such as Stanford V for 12 weeks).

PET/CT scans are often done after several cycles of chemo to determine how much more treatment you need. This is often followed by more chemo. Radiation therapy is typically given to the sites of the tumor at this point, especially if it was bulky.

For those who don’t respond to treatment, chemotherapy using different drugs or high-dose chemotherapy (and possibly radiation) followed by a stem cell transplant may be recommended. Treatment with the monoclonal antibody brentuximab vedotin may be another option.

Stages III and IV

This includes HD that is both above and below the diaphragm and/or has spread widely through one or more organs outside the lymph system.

Doctors generally treat these stages with chemotherapy using more intense regimens than what is used for earlier stages. Although ABVD (for at least 6 cycles) can be used, some doctors favor more intense treatment with the Stanford V regimen for 12 weeks, or even the BEACOPP regimen if there are several unfavorable prognostic factors.

PET/CT scans might be used during or after chemo to assess how much more treatment you need. Depending on the results of the scans, more chemo may be given. Radiation therapy may be given after chemo, especially if there were any large tumor areas.

For those who don’t respond to treatment, chemo using different drugs or high-dose chemotherapy (and possibly radiation) followed by a stem cell transplant may be recommended. Treatment with the monoclonal antibody brentuximab vedotin may be another option.

Resistant Hodgkin disease

Treatment for HD should remove all traces of the cancer. Once initial treatment is complete, the doctor will do tests such as PET/CT scans to look for any signs of HD. If HD is still there, most experts think that more of the same treatment is unlikely to cure it.
Sometimes, radiation therapy to an area of disease that remains after chemotherapy might be curative. Using a different combination of chemo drugs may be another option. If radiation alone was the initial treatment, using chemo (with or without more radiation) might also be curative.

If HD is still there after a combination of these treatments, most doctors would recommend high-dose chemo (and possibly radiation) followed by an autologous stem cell transplant, if it can be done. If cancer still remains after this, an allogeneic stem cell transplant may be an option.

Another option, either instead of or after a stem cell transplant, may be treatment with the monoclonal antibody brentuximab vedotin (Adcetris).

Recurrent or relapsed Hodgkin disease

Treatment in this situation depends on where the disease comes back, on how long it has been since the initial treatment, and on what the initial treatment was.

If the initial treatment was radiation therapy alone, chemotherapy is usually given for recurrent disease.

If chemotherapy without radiation therapy was used first, and the cancer comes back only in the lymph nodes, the patient could receive radiation therapy to the lymph nodes with or without more chemo. Chemo with different drugs may be another option.

Radiation usually cannot be repeated in the same area. If, for example, HD in the chest was treated with radiation and it comes back in the chest, it usually cannot be treated with more radiation to the chest. This holds true no matter how long ago the radiation was first given.

If the disease returns after several years, then using the same or different chemo drugs (possibly along with radiation) might still cure it. On the other hand, patients whose cancer recurs soon after treatment may need more intensive treatment. For example, if the HD has returned within a few months of the original treatment, high-dose chemo (and possibly radiation) followed by an autologous stem cell transplant may be recommended.

If the cancer still remains after an autologous transplant, an allogeneic stem cell transplant may be an option. Another option, either instead of or after a stem cell transplant, may be treatment with the monoclonal antibody brentuximab vedotin (Adcetris).

Treating nodular lymphocyte predominant Hodgkin disease (NLPHD)

Because this rare type of Hodgkin disease (HD) tends to grow more slowly than classic HD, it is sometimes treated slightly differently.
In people with early stage NLPHD without any B symptoms, radiation therapy alone is often all that is needed.

If the disease is more advanced or if a person has B symptoms, chemotherapy, with or without radiation therapy, is likely to be recommended. Many doctors use the ABVD chemo regimen, although some doctors prefer others. Another option is to give the monoclonal antibody rituximab (Rituxan), with or without chemotherapy (and sometimes radiation).

An option for some people who are not having major symptoms might be to have the disease watched closely at first, and then start treatment only when symptoms appear.

Treating Hodgkin disease in children

Treatment of Hodgkin disease in children is slightly different from the treatment for adults. Children’s bodies tend to tolerate chemotherapy better in the short term than adults do. But some side effects are more likely to occur in children. And because some of these side effects could be long-term, children who survive their cancer need careful attention for the rest of their lives.

Since the 1960s, most children and teens with cancer have been treated at special centers designed for them. Being treated in these centers offers the advantage of having a team of specialists who are experienced with the differences between adult and childhood cancers, as well as the unique needs of children with cancer and their families. This team usually includes pediatric oncologists, surgeons, radiation oncologists, pathologists, pediatric oncology nurses, and nurse practitioners.

Childhood cancer centers also have psychologists, social workers, child life specialists, nutritionists, rehabilitation and physical therapists, and educators who can support and educate the entire family.

Most children with cancer in the United States are treated at a center that is a member of the Children’s Oncology Group (COG). All of these centers are associated with a university or children’s hospital. As we have learned more about treating childhood cancer, it has become even more important that treatment be given by experts in this area.

In these centers, doctors treating children with Hodgkin disease often use treatment plans that are part of clinical trials. The purpose of these studies is to find the most effective treatment that causes the fewest side effects.

Any time a child or teen is diagnosed with cancer, it affects every family member and nearly every aspect of the family’s life. You can read more about coping with these changes in our document *Children Diagnosed With Cancer: Dealing With Diagnosis.*
Differences from treatment in adults

As in adults, the main goal of treatment is to cure the child without causing long-term problems. Doctors adjust the treatment based on the child’s age, the extent of the cancer, how well the cancer is responding to treatment, and other factors.

If the child is past puberty and muscles and bones are fully developed, treatment is usually the same as that given to adults. But if the child has not reached his or her full body size, chemotherapy (chemo) will likely be favored over radiation therapy. Radiation can affect bone and muscle growth and prevent children from reaching their normal size.

When treating children with HD, doctors often combine chemo with low doses of radiation. The chemo often includes combinations of many drugs rather than just the usual adult ABVD regimen, especially for cancers that have unfavorable features or are more advanced. This approach has had excellent success rates, even for children with more advanced disease.

Stages IA and IIA, favorable: Treatment generally starts with chemo alone, used at the lowest dose that is likely to result in a cure. If the disease doesn’t go away completely, radiation therapy or more chemo might be added.

If radiation therapy is used, the dose and area treated are kept as small as possible. If radiation is used on the lower part of the body in girls and young women, the ovaries should be protected to help preserve fertility.

Stages I and II, unfavorable: Treatment is likely to consist of more intense chemo combined with radiation therapy, although the dose and field of radiation are still kept as small as possible.

Stages III and IV: Treatment includes more intense chemo, either alone or combined with low-dose radiation therapy to areas with bulky disease (areas that contain a lot of Hodgkin disease).

Hodgkin disease in pregnancy

If a woman is pregnant and diagnosed with Hodgkin disease, treatment options depend on several factors. The woman and her doctors must take into account the extent of the cancer, how quickly it is growing, how far along the pregnancy is, and the woman’s own personal preferences.

If the cancer is diagnosed during the second half of the pregnancy and is not causing problems, a woman can often wait until the baby is born (sometimes by inducing labor a few weeks early) before starting treatment. This is the approach that is safest for the baby.
If the Hodgkin disease requires treatment during the pregnancy, chemotherapy using either one or a few drugs may be given, based on the circumstances. If possible, this is delayed until later in the pregnancy (typically after the first trimester, when the baby’s organs are fully formed).

Radiation is not often given because of concerns about the possible long-term effects on the unborn baby. But a few studies suggest that as long as very careful precautions are taken to aim the radiation precisely, limit the doses, and shield the baby, pregnant women with Hodgkin disease in lymph nodes in the neck, underarm area, or inside the chest can have this treatment with little or no apparent risk to the baby.

The need to avoid radiation also limits which imaging tests can be used to help determine the stage (extent) of the lymphoma or to see if treatment is working. CT scans, PET scans, and x-rays all use radiation, so they are avoided if at all possible. MRI scans and ultrasound can often be used instead.

More treatment information

For more details on treatment options – including some that may not be addressed in this document – the National Comprehensive Cancer Network (NCCN) and the National Cancer Institute (NCI) are good sources of information.

The NCCN, made up of experts from many of the nation’s leading cancer centers, develops cancer treatment guidelines for doctors to use when treating patients. These are available on the NCCN website (www.nccn.org).

The NCI, part of the US National Institutes of Health, provides treatment guidelines by phone (1-800-4-CANCER) and on its website (www.cancer.gov). Detailed information intended for use by cancer care professionals is also available on this site.

What should you ask your doctor about Hodgkin disease?

As you cope with Hodgkin disease and the process of treatment, you need to have honest, open discussions with the cancer care team. You should ask any question, no matter how minor it might seem. Among the questions you might want to ask are:

- What type of Hodgkin disease is it?
- What is the stage (extent) of the cancer? What does this mean?
- What tests need to be done before we can decide on treatment?
- Are there other doctors I (we) need to see?
• How much experience do you have treating Hodgkin disease?

• Should we get a second opinion before starting treatment? Can you suggest someone?

• What are our treatment choices? Which do you recommend? Why?

• Does one type of treatment reduce the risk of the cancer coming back more than another?

• What short-term side effects can be expected from treatment? What can be done about these side effects?

• What are the possible long-term side effects?

• Will the treatment affect my (my child’s) ability to have children? Can we do anything about this?

• How soon do we need to start treatment?

• What should I do to be ready (or get my child ready) for treatment?

• How long will treatment last? What will it be like? Where will it be done?

• How will treatment affect my (child’s) daily activities?

• What are the chances that the cancer will come back? How will we know if the cancer has come back? What should we look out for?

• What would we do if the treatment doesn’t work or if the cancer comes back?

• What type of follow-up is needed after treatment?

You will no doubt have other questions. For instance, you might want more information about recovery times so that you can plan work or school schedules. Or you might want to ask about clinical trials.

Be sure to write your questions down so that you remember to ask them during visits with your cancer care team. Also keep in mind that doctors are not the only ones who can provide you with information. Other health care professionals, such as nurses and social workers, may have the answers to some of your questions. You can find out more about communicating with your health care team in our document Talking With Your Doctor.

What happens after treatment for Hodgkin disease?

For many people with Hodgkin disease, treatment can cure the cancer. Completing treatment can be both stressful and exciting. You may be relieved to finish treatment, but
find it hard not to worry about the lymphoma coming back. (When cancer comes back after treatment, it is called recurrence.) This is a very common concern in people who have had cancer.

It may take a while before your fears lessen. But it might help to know that many cancer survivors have learned to live with this uncertainty and are leading full lives. Our document *Living With Uncertainty: The Fear of Cancer Recurrence* gives more detailed information on this.

For some people, Hodgkin disease may never go away completely. These people may get regular treatments with chemotherapy, radiation therapy, or other therapies to help keep it under control for as long as possible and to help relieve symptoms from it. Learning to live with Hodgkin disease as more of a chronic disease can be difficult and very stressful. It has its own type of uncertainty. Our document *When Cancer Doesn’t Go Away* talks more about this.

Follow-up care

If you (or your child) have completed treatment, your doctors will still want to watch you closely. It’s very important to go to all your follow-up appointments. Follow-up care will be needed for many years after treatment for Hodgkin disease.

During these visits, the doctor will ask about symptoms, do physical exams, and may order blood tests or imaging tests such as CT scans or chest x-rays. Doctor visits and tests are usually recommended every few months for the first several years after treatment. Gradually, the length of time between visits can be increased, but even after 5 years they should be done at least yearly.

Follow-up is needed to check for cancer recurrence or spread, as well as possible side effects of certain treatments. This is the time for you to ask your health care team any questions and to discuss any concerns you might have.

If Hodgkin disease does come back at some point, further treatment will depend on what treatments you’ve had before, how long it’s been since treatment, and your health. For more information, see “Recurrent or relapsed Hodgkin disease” in the “Treatment options by stage” section. For more general information on dealing with a recurrence, see our document *When Your Cancer Comes Back: Cancer Recurrence*.

Watching for late and long-term side effects

Each type of treatment for Hodgkin disease has side effects that could last for months or longer, or that might not show up until long after treatment has ended. Some side effects, like loss of fertility (ability to have children), could be permanent. Because so many people are now living for a long time after their treatment, watching for these late and long-lasting side effects is very important. Be sure to discuss what these possible effects
might be with your (child’s) medical team so you know what to watch for and report to
the doctor.

Second cancers: One uncommon but very serious side effect of Hodgkin disease
treatment is developing a second type of cancer later on. People who have had Hodgkin
disease have an increased risk for several types of cancer. This is discussed in the section
“Can I get another cancer after having Hodgkin disease?”

Fertility issues: A possible long-term effect of chemotherapy and radiation therapy,
especially in younger patients, is reduced or lost fertility. For example, some chemo
drugs can affect a male’s ability to make sperm, which might be temporary or permanent.
If the patient is old enough and is going to get drugs that can affect fertility, sperm
banking should be considered before chemo is started.

Likewise, women may stop having menstrual periods with chemotherapy. This may or
may not return to normal. Radiation to the lower abdomen can cause infertility unless the
ovaries are surgically moved outside the radiation field beforehand. Moving the ovaries
does not affect cure rates because Hodgkin disease almost never spreads to the ovaries.

To learn more about fertility issues, see our documents Fertility and Women With Cancer
and Fertility and Men With Cancer.

Infections: For unknown reasons, the immune system of people with Hodgkin disease
does not work properly. Treatments such as chemotherapy, and radiation or surgery to
treat an enlarged spleen (splenectomy) can add to this problem. Splenectomy was once
commonly done but is now rare for people with Hodgkin disease. Patients who have their
spleen removed should get vaccinated against certain bacteria.

All people who have had Hodgkin disease should keep up with their flu shots. Keeping
up with vaccinations and careful, prompt treatment of infections are very important.

Thyroid problems: Radiation therapy to the chest or neck to treat Hodgkin disease
might affect the thyroid gland, causing it to make less thyroid hormone. People with this
condition, known as hypothyroidism, may need to take thyroid medicine daily. People
who got radiation to the neck or upper chest should have their thyroid function checked
with blood tests at least yearly.

Heart disease and strokes: People who have had radiation to the chest have a higher
risk of heart disease and heart attacks. This has become less of a problem with more
modern radiation techniques, but it’s important to do what you can to help lower your
risk, such as not smoking, staying at a healthy weight, being active, and eating a healthy
diet. Some chemo drugs such as doxorubicin (Adriamycin) and mitoxantrone can also
cause heart damage. Your doctor might want to check your heart function several years
after your treatment.

Radiation to the neck increases the chance of stroke because it can damage the blood
vessels in the neck that supply the brain. Smoking and high blood pressure also increase
the risk of stroke. Once again, it’s important to avoid smoking. It’s also important to have regular check-ups with your doctor and to get treated if you have high blood pressure.

Lung damage: The chemo drug bleomycin can damage the lungs, as can radiation therapy to the chest. This can lead to problems such as shortness of breath, which might not show up until years after treatment. Smoking can also seriously damage the lungs, so it’s important that people who have had these treatments do not smoke.

Special concerns in childhood Hodgkin disease survivors

Just as the treatment of childhood Hodgkin disease requires a very specialized approach, so does follow-up and monitoring for late effects of treatment. Careful follow-up after treatment is very important. The earlier problems are found, the more likely it is they can be treated effectively.

Along with physical side effects (including those listed above), survivors of childhood cancer may have emotional or psychological issues. They also may have some problems with normal functioning and school work. These can often be addressed with support and encouragement. Doctors and other members of the health care team can also often recommend special support programs and services to help children after cancer treatment.

To help increase awareness of late effects and improve follow-up care for childhood cancer survivors throughout their lives, the Children’s Oncology Group (COG) has developed long-term follow-up guidelines for survivors of childhood cancers. These guidelines can help you know what to watch for, what types of health screening should be done, and how late effects may be treated.

It is very important to discuss possible long-term complications with your child’s health care team, and to make sure there is a plan in place to watch for these problems and treat them, if needed. To learn more, ask your child’s doctors about the COG survivor guidelines. You can also download them for free on the COG website: www.survivorshipguidelines.org. The guidelines are written for health care professionals. Patient versions of some of the guidelines are available (as “Health Links”) on the site as well, but we urge you to discuss them with a doctor.

For more about some of the possible long-term effects of treatment, see our document *Children Diagnosed With Cancer: Late Effects of Cancer Treatment*.

Seeing a new doctor

At some point after treatment, you (or your child) may be seeing a new doctor who does not know anything about your (child’s) medical history. It is important that you be able to give the new doctor the details of the diagnosis and treatment. Gathering these details soon after treatment may be easier than trying to get them at some point in the future. Make sure you have this information handy (and always keep copies for yourself):
• The names and contact information of the doctors who treated your cancer
• A copy of your pathology report(s) from any biopsies or surgeries
• Copies of imaging tests (CT or MRI scans, etc.), which can usually be stored digitally (on a DVD, etc.)
• If you had surgery, a copy of your operative report(s)
• If you stayed in the hospital, a copy of the discharge summary that the doctor prepared when you were sent home
• If you had chemotherapy or other drug treatments, a list of the drugs, drug doses, and when you took them
• If you had radiation therapy, a summary of the type and dose of radiation and when and where it was given.

It is also very important to keep your health insurance. Tests and doctor visits cost a lot, and even though no one wants to think of their cancer coming back, this could happen.

Can I get another cancer after having Hodgkin disease?

Cancer survivors can be affected by a number of health problems, but often their greatest concern is facing cancer again. If a cancer comes back after treatment it is called a recurrence. But some cancer survivors may develop another type of cancer later. This is called a second cancer. No matter what type of cancer you have had, it’s still possible to get another (new) cancer, even after surviving the first. In fact, certain types of cancer and cancer treatments can be linked to a higher risk of certain second cancers.

People who have had Hodgkin disease can get any type of second cancer, but research has found they have an increased risk of:

• Leukemia and myelodysplastic syndrome (MDS)
• Non-Hodgkin lymphoma
• Breast cancer (in women)
• Lung cancer
• Thyroid cancer
• Cancer of the lip and tongue
• Salivary gland cancer
• Stomach cancer
• Colon cancer
• Liver cancer
• Bone cancer
• Soft tissue cancer
• Anal cancer
• Cancer of the uterus
• Cancer of the ureter (the tube that connects the kidney and the bladder)
• Melanoma of the skin
• Kaposi sarcoma

The increased risk of many of these cancers seems to be linked to treatment with radiation.

Over time, treatment for Hodgkin disease has changed. For example, chemotherapy with alkylating agents (certain chemo drugs that are more strongly liked to leukemia) has become much less common. Radiation is given in lower doses, and often only the areas directly affected by Hodgkin disease are treated. These changes seem to have helped lower the risks of some cancers after treatment, but long-term follow-up studies are still needed to be sure.

Leukemia and myelodysplastic syndrome (MDS)

The most common type of leukemia seen after Hodgkin disease is acute myeloid leukemia (AML), but acute lymphocytic and chronic myeloid leukemias are also seen. Myelodysplastic syndrome (MDS) can develop before acute leukemia. The increased risk of leukemia is mainly linked to treatment with chemotherapy (chemo), and is highest if an alkylating agent was used. The combination of drugs known as MOPP (mechlorethamine, vincristine/Oncovin, prednisone, and procarbazine), when used as the main chemo regimen, is linked to a high risk of leukemia and MDS. However, MOPP is rarely used as the main treatment now. Leukemia and MDS are much less common in people treated with more modern regimens such as the combination known as ABVD (doxorubicin/Adriamycin, bleomycin, vinblastine, and dacarbazine).

Some people with Hodgkin disease are treated with a stem cell transplant. Most often, this is used for Hodgkin disease that has come back after treatment (or never went away in the first place). People who have had a stem cell transplant have a higher risk of leukemia and MDS that seems to be related to the additional chemo that is given prior to transplant.
Treating Hodgkin disease with radiation alone doesn’t have much of an effect on leukemia risk, and it isn’t clear if adding radiation to chemo increases the risk from the chemo even further.

The chance of getting leukemia after Hodgkin disease is related to the patient’s age when they were treated, with the highest risk seen in those who were 35 or older during treatment. The risk also seems to go up as the amount of chemo used increases.

Non-Hodgkin lymphoma

The risk of non-Hodgkin lymphoma (NHL) is higher in people who have had Hodgkin disease. This risk does not seem to change based on the type of treatment used.

Breast cancer

This is the most common second cancer in female survivors of Hodgkin disease. The risk is highest in those who had radiation to an area in the center of the chest between the lungs (the *mediastinum*) before age 30. In the past, many patients got radiation to this area as a part of *mantle field* radiation. (Mantle field radiation covers the area of the neck, chest, and armpits.)

The risk of breast cancer from radiation can be affected by chemo and its side effects. Chemotherapy that includes drugs called *alkylating agents* causes some women to go through menopause early. In women who went through menopause before age 35 because of Hodgkin disease treatment, the risk of breast cancer isn’t increased – it’s actually lower than expected.

Lung cancer

The higher risk of lung cancer is related to chest radiation treatments as well as chemotherapy with alkylating agents. Patients who have both chemo and radiation are even more likely to develop lung cancer. Smoking further increases the risk. The risk of lung cancer goes up if the patient smoked before treatment, but the risk gets even higher if the patient keeps smoking after treatment.

Thyroid cancer

The risk of thyroid cancer is increased in Hodgkin disease patients who were treated with radiation to the neck.

Follow-up care after treatment

After completing treatment for Hodgkin disease, you should still see your doctor regularly and may have tests to look for signs that the cancer has come back. Let your
doctor know about any new symptoms or problems, because they could be caused by the lymphoma coming back or by a new disease or second cancer.

Women who were treated with radiation to the chest (such as mantle field radiation therapy) before age 30 have an increased risk of breast cancer. The American Cancer Society recommends yearly breast MRIs in addition to mammograms and clinical breast exams beginning at age 30 for these women.

The Children’s Oncology Group has guidelines for the follow-up of patients treated for cancer as a child, teen, or young adult, including screening for second cancers. These can be found at www.survivorshipguidelines.org.

For other patients, experts don’t recommend any additional testing to look for second cancers unless they have symptoms.

Survivors of Hodgkin disease should follow the American Cancer Society guidelines for the early detection of cancer and should stay away from tobacco products. Smoking increases the risk of many cancers and might further increase the risk of some of the second cancers seen in people who have had Hodgkin disease.

To help maintain good health, survivors should also:

- Get to and stay at a healthy weight
- Be physically active
- Eat a healthy diet, with an emphasis on plant foods
- Limit alcohol to no more than 1 drink per day for women or 2 per day for men

These steps may also lower the risk of some cancers.

See Second Cancers in Adults for more information about causes of second cancers.

Lifestyle changes after having Hodgkin disease

You can’t change the fact that you have had cancer. What you can change is how you live the rest of your life – making choices to help you stay healthy and feel as well as you can. This can be a time to look at your life in new ways. Maybe you are thinking about ways to improve your health. Some people even start during cancer treatment.

Making healthier choices

For many people, a diagnosis of cancer helps them focus on their health in ways they may not have thought much about in the past. Are there things you could do that might make you healthier? Maybe you could try to eat better or get more exercise. Maybe you could cut down on alcohol, or give up tobacco. Even things like keeping your stress level
under control may help. Now is a good time to think about making changes that can have positive effects for the rest of your life. You will feel better and you will also be healthier.

You can start by working on those things that worry you most. Get help with those that are harder for you. For instance, if you are thinking about quitting smoking and need help, call the American Cancer Society at 1-800-227-2345 for information and support.

Eating better

Eating right can be hard for anyone, but it can get even tougher during and after cancer treatment. Treatment may change your sense of taste. Nausea can be a problem. You may not feel like eating and lose weight when you don’t want to. Or you may have gained weight that you can’t seem to lose. All of these things can be very frustrating.

If treatment causes weight changes or eating or taste problems, do the best you can and keep in mind that these problems usually get better over time. You may find it helps to eat small portions every 2 to 3 hours until you feel better. You may also want to ask your cancer team about seeing a dietitian, an expert in nutrition who can give you ideas on how to deal with these treatment side effects.

One of the best things you can do after cancer treatment is to practice healthy eating habits. You may be surprised at the long-term benefits of some simple changes, like increasing the variety of healthy foods you eat. Getting to and staying at a healthy weight, eating a healthy diet, and limiting your alcohol intake may lower your risk for a number of types of cancer, as well as having many other health benefits.

For more information, see our document [*Nutrition and Physical Activity During and After Cancer Treatment: Answers to Common Questions*](#).

Rest, fatigue, and exercise

Extreme tiredness, called fatigue, is very common in people treated for cancer. This is not a normal tiredness, but a bone-weary exhaustion that often doesn’t get better with rest. For some people, fatigue lasts a long time after treatment, and can make it hard for them to be active and do other things they want to do. But exercise can help reduce fatigue. Studies have shown that patients who follow an exercise program tailored to their personal needs feel better physically and emotionally and can cope better, too.

If you were sick and not very active during treatment, it’s normal for your fitness, endurance, and muscle strength to decline. Any plan for physical activity should fit your own situation. A person who has never exercised will not be able to take on the same amount of exercise as someone who plays tennis twice a week. If you haven’t been active in a few years, you will have to start slowly – maybe just by taking short walks.
Talk with your health care team before starting anything. Get their opinion about your exercise plans. Then, try to find an exercise buddy so you’re not doing it alone. Having family or friends involved when starting a new activity program can give you that extra boost of support to keep you going when the push just isn’t there.

If you are very tired, you will need to learn to balance activity with rest. It’s OK to rest when you need to. Sometimes it’s really hard for people to allow themselves to rest when they are used to working all day or taking care of a household, but this is not the time to push yourself too hard. Listen to your body and rest when you need to. (For more information on dealing with fatigue, please see Fatigue in People With Cancer and Anemia in People With Cancer.)

Keep in mind exercise can improve your physical and emotional health.

• It improves your cardiovascular (heart and circulation) fitness.
• Along with a good diet, it will help you get to and stay at a healthy weight.
• It makes your muscles stronger.
• It reduces fatigue and helps you have more energy.
• It can help lower anxiety and depression.
• It can make you feel happier.
• It helps you feel better about yourself.

And we know that getting regular physical activity plays a role in helping to lower the risk of some cancers, as well as having other health benefits.

Can I lower my risk of Hodgkin disease progressing or coming back?

Most people want to know if they can make specific lifestyle changes to reduce their risk of cancer progressing or coming back. Unfortunately, for most cancers there isn’t much solid evidence to guide people. This doesn’t mean that nothing will help — it’s just that for the most part this is an area that hasn’t been well studied. Most studies have looked at lifestyle changes as ways of preventing cancer in the first place, not slowing it down or preventing it from coming back.

At this time, not enough is known about Hodgkin disease to say for sure if there are things you can do that will be helpful. Adopting healthy behaviors such as not smoking, eating well, and staying at a healthy weight may help, but no one knows for sure. However, we do know that these types of changes can have positive effects on your health that can extend beyond your risk of Hodgkin disease or other cancers.
So far, no dietary supplements of any kind have been shown to clearly help lower the risk of Hodgkin disease progressing or coming back. Again, this doesn’t necessarily mean that none will help, but it’s important to understand that none have been proven to do so.

How might Hodgkin disease affect your emotional health?

During and after treatment, you may find yourself overcome with many different emotions. This happens to a lot of people.

You may find yourself thinking about death and dying. Or maybe you’re more aware of the effect the cancer has on your family, friends, and career. You might take a new look at your relationships with those around you. Unexpected issues may also cause concern. For instance, you might be stressed by financial concerns resulting from your treatment. You might also see your health care team less often after treatment and have more time on your hands. These changes can make some people anxious.

Almost everyone who is going through or has been through cancer can benefit from getting some type of support. You need people you can turn to for strength and comfort. Support can come in many forms: family, friends, cancer support groups, church or spiritual groups, online support communities, or one-on-one counselors. What’s best for you depends on your situation and personality. Some people feel safe in peer-support groups or education groups. Others would rather talk in an informal setting, such as church. Others may feel more at ease talking one-on-one with a trusted friend or counselor. Whatever your source of strength or comfort, make sure you have a place to go with your concerns.

The cancer journey can feel very lonely. It’s not necessary or good for you to try to deal with everything on your own. And your friends and family may feel shut out if you do not include them. Let them in, and let in anyone else who you feel may help. If you aren’t sure who can help, call us at 1-800-227-2345 and we can put you in touch with a group or resource that may work for you. You can also read our document Distress in People with Cancer or see the Emotional Side Effects section of our website for more information.

If treatment for Hodgkin disease is no longer working

If Hodgkin disease keeps growing or comes back after one kind of treatment, it’s often possible to try other treatment plans that might still cure it, or at least keep it under control enough to help you live longer and feel better. Clinical trials also might offer chances to try newer treatments that could be helpful.

But when a person has tried many different treatments and the lymphoma is no longer getting better, even newer treatments may no longer be helpful. If this happens, it’s important to weigh the possible limited benefits of trying a new treatment against the possible downsides, including treatment side effects. Everyone has their own way of looking at this.
This is likely to be the hardest part of your battle with cancer — when you have been through many treatments and nothing’s working anymore. Your doctor might offer you new options, but at some point you may need to consider that treatment is not likely to improve your health or change your outcome or survival.

If you want to continue to get treatment for as long as you can, you need to think about the odds of treatment having any benefit and how this compares to the possible risks and side effects. Your doctor can estimate how likely it is the cancer will respond to treatment you’re considering. For instance, the doctor may say that more treatment might have about a 1 in 100 chance of working. Some people are still tempted to try this. But it’s important to have realistic expectations if you do choose this plan.

Palliative care

No matter what you decide to do, it’s important that you feel as good as you can. Make sure you are asking for and getting treatment for any symptoms you might have, such as nausea or pain. This type of treatment is called *palliative care*.

Palliative care helps relieve symptoms, but it is not expected to cure the disease. It can be given along with cancer treatment, or can even be cancer treatment. The difference is its purpose — the main goal of palliative care is to improve the quality of your life, or help you feel as good as you can for as long as you can. Sometimes this means using drugs to help with symptoms like *pain* or *nausea*. Sometimes, though, the treatments used to control your symptoms are the same as those used to treat cancer. For instance, radiation or other treatments might be used to help relieve pain caused by a large tumor. But this is not the same as treatment to try to cure the cancer.

Hospice care

At some point, you may benefit from hospice care. This is special care that treats the person rather than the disease; it focuses on quality rather than length of life. Most of the time, it is given at home. Your cancer may be causing problems that need to be managed, and hospice focuses on your comfort. You should know that while getting hospice care often means the end of treatments such as chemo and radiation, it doesn’t mean you can’t have treatment for the problems caused by the cancer or other health conditions. In hospice the focus of your care is on living life as fully as possible and feeling as well as you can at this difficult time. You can learn more in our document *Hospice Care*.

Staying hopeful is important, too. Your hope for a cure may not be as bright, but there is still hope for good times with family and friends — times that are filled with happiness and meaning. Pausing at this time in your cancer treatment gives you a chance to refocus on the most important things in your life. Now is the time to do some things you’ve always wanted to do and to stop doing the things you no longer want to do. Though the cancer may be beyond your control, there are still choices you can make.
To learn more

You can learn more about the changes that occur when treatment stops working, and about planning ahead for yourself and your family, in our documents *Advance Directives* and *Nearing the End of Life*.

What’s new in Hodgkin disease research and treatment?

Important research into Hodgkin disease is going on in many university hospitals, medical centers, and other institutions around the world. Scientists are getting closer to finding out what causes the disease and how to improve treatment.

Imaging tests

In recent years, PET/CT scans have been found to be very helpful in determining the extent of Hodgkin disease in the body and in assessing how well treatment is working. PET/CT scans are now commonly used early in the course of treatment to help doctors decide how much treatment needs to be given.

Tailoring treatment

In general, cure rates for Hodgkin disease are high, but long-term side effects of treatment are an important issue. A very active area of research is directed at learning which patients can be treated with gentler therapy and which patients need stronger treatment.

A related area of research is finding less-toxic treatments that do not have serious long-term side effects, yet still cure as many patients as possible. New chemotherapy (chemo) combinations of as many as 10 different drugs are being studied. The reasoning behind this approach is that even though more drugs are needed, using less of each drug might lead to fewer side effects. Another approach is using newer drugs that better target Hodgkin disease cells, as opposed to chemo drugs. Some of these are described below.

The same is true for radiation therapy. Doctors are looking to see which patients (especially children) might do just as well with lower doses of radiation, or even no radiation. Doctors are also studying whether newer forms of radiation therapy, such as intensity-modulated radiation therapy (IMRT) and proton therapy, might be useful for Hodgkin disease. These approaches focus radiation more precisely on tumors, which limits the doses reaching nearby normal tissues.
Chemotherapy

New chemo drugs and drug combinations are being studied in patients with Hodgkin disease. Some drugs, such as vinorelbine, idarubicin, bendamustine, and gemcitabine, are already used to treat other cancers, and have shown promise against Hodgkin disease that has relapsed after other chemo treatments. Studies are in progress to see if these drugs could be more effective than the ones now in use.

Targeted therapy

Newer drugs that work differently from standard chemo drugs are now being studied as well. These are known as targeted therapy drugs.

For example, drugs known as mTOR inhibitors (such as sirolimus, temsirolimus, and everolimus) have shown some promise in early clinical studies against relapsed Hodgkin disease. Drugs called histone deacetylase (HDAC) inhibitors, such as panobinostat and vorinostat, have also shown some early promise.

Other drugs being studied include lenalidomide (Revlimid®) and bortezomib (Velcade®). These drugs are more often used to treat multiple myeloma and some non-Hodgkin lymphomas, but they may prove to be useful in Hodgkin disease as well.

Some newer targeted drugs, such as PLX3397, might affect the other cells in Hodgkin disease tumors, rather than the cancer cells themselves. These other cells actually make up much of the Hodgkin disease tumors and are thought to help the cancer cells grow. Research on these types of drugs is still in early stages.

Monoclonal antibodies

Antibodies are proteins normally made by the immune system to help fight infections. Each antibody attacks only a specific target (usually a protein on the surface of an unwanted cell). Monoclonal antibodies (mAbs) are man-made versions of these immune system proteins. Some can kill cancer cells by themselves. Others have radioactive molecules or cell poisons attached to them, which help kill the cancer cells. An advantage of these drugs is that they seem to target lymphoma cells while having fewer side effects than standard chemo drugs. They may be used alone or combined with chemo.

Some mAbs, such as brentuximab vedotin (Adcetris) and rituximab (Rituxan), are already being used to treat Hodgkin disease in some situations (see “Monoclonal antibodies for Hodgkin disease”). Researchers are now looking to see if these drugs might be useful in other situations. For example, brentuximab is now being studied to see if it might be helpful earlier in the course of the disease. And studies are now being done to see if rituximab can help treat classic forms of Hodgkin disease as well as the nodular lymphocyte predominant type.
Many newer mAbs are now being studied as well.

Additional resources for Hodgkin disease

More information from your American Cancer Society

Here is more information you might find helpful. You also can order free copies of our documents from our toll-free number, 1-800-227-2345, or read them on our website.

Living With Cancer

- [After Diagnosis: A Guide for Patients and Families](#) (also in Spanish)
- [Guide to Controlling Cancer Pain](#) (also in Spanish)
- [Talking With Your Doctor](#) (also in Spanish)
- [Distress in People With Cancer](#)
- [Nutrition for the Person With Cancer During Treatment](#)
- [Nutrition and Physical Activity During and After Cancer Treatment: Frequently Asked Questions](#)
- [When Cancer Doesn’t Go Away](#)

Understanding cancer treatment

- [Stem Cell Transplant (Peripheral Blood, Bone Marrow, and Cord Blood Transplants)](#) (also in Spanish)
- [A Guide to Chemotherapy](#) (also in Spanish)
- [Understanding Radiation Therapy: A Guide for Patients and Families](#) (also in Spanish)

Cancer treatment side effects

- [Caring for the Patient With Cancer at Home: A Guide for Patients and Families](#) (also in Spanish)
- [Nausea and Vomiting](#)
- [Anemia in People With Cancer](#)
- [Fatigue in People With Cancer](#)
Family, communication, and caregiving

Talking With Friends and Relatives About Your Cancer (also in Spanish)

Helping Children When A Family Member Has Cancer: Dealing With Diagnosis (also in Spanish)

What It Takes to Be a Caregiver

Other health information

Clinical Trials: What You Need to Know

Health Professionals Associated With Cancer Care

Nearing the End of Life

Hospice Care

Insurance, employment, and financial issues

Working During Cancer Treatment

Health Insurance and Financial Assistance for the Cancer Patient (also in Spanish)

In Treatment: Financial Guidance for Cancer Survivors and Their Families (also in Spanish)

Your American Cancer Society also has books that you might find helpful. Call us at 1-800-227-2345 or visit our bookstore online at cancer.org/bookstore to find out about costs or to place an order.

National organizations and websites*

Along with the American Cancer Society, other sources of information and support include:

Hodgkin disease

Leukemia & Lymphoma Society
Toll-free number: 1-800-955-4572 or 1-914-949-5213
Website: www.lls.org

Offers information on Hodgkin disease and treatments, financial information, and financial assistance for people with certain diagnoses
Lymphoma Research Foundation
Toll-free number: 1-800-500-9976
Website: www.lymphoma.org
Offers a helpline on lymphoma treatment, educational materials, information on clinical trials, peer support, newsletters, and funding for research

National Cancer Institute
Toll-free number: 1-800-4-CANCER (1-800-422-6237) or TTY: 1-800-332-8615
Website: www.cancer.gov
Offers free, accurate, up-to-date information about cancer to patients, their families, and the general public; also helps people find clinical trials in their area

National Coalition for Cancer Survivorship
Toll-free number: 1-888-650-9127
1-877-NCCS-YES (622-7937) for some publications and Cancer Survivor Toolbox® orders
Website: www.canceradvocacy.org
Has publications on many cancer-related topics; also offers the Cancer Survival Toolbox – a free program that teaches skills that can help people with cancer meet the challenges of their illness

Bone marrow and peripheral blood stem cell transplants

Be the Match (formerly National Marrow Donor Program)
Toll-free number: 1-800-MARROW-2 (1-800-627-7692)
Website: www.bethematch.org
Provides a registry of volunteer bone marrow donors and cord blood units (the largest listing in the world), as well as a searchable listing of transplant centers that can be accessed directly at www.marrow.org/access. Also supports patients throughout the transplant process, from diagnosis through survivorship; has free educational materials; and offers financial assistance to eligible underinsured patients.

National Bone Marrow Transplant Link (nbmtLINK)
Toll-free number: 1-800-LINK-BMT (1-800-546-5268)
Website: www.nbmtlink.org
Offers information and referrals to meet a wide range of needs; support via one-on-one conversations with trained peer support volunteers who are transplant survivors, caregivers, and donors; telephone support groups that link patients and families together to offer mutual support and coping strategies; and the nbmtLINK Online Resource Library – a comprehensive, searchable library giving access to the latest transplant information.
Inclusion on this list does not imply endorsement by the American Cancer Society.

No matter who you are, we can help. Contact us anytime, day or night, for information and support. Call us at 1-800-227-2345 or visit www.cancer.org.

References: Hodgkin disease detailed guide

Last Medical Review: 7/10/2014
Last Revised: 3/4/2015

2014 Copyright American Cancer Society