Kidney Cancer (Adult) - Renal Cell Carcinoma

What is kidney cancer?

Kidney cancer is a cancer that starts in the kidneys. Cancer starts when cells in the body begin to grow out of control. Cells in nearly any part of the body can become cancer, and can spread to other areas of the body. To learn more about how cancers start and spread, see What Is Cancer?

About the kidneys

To understand more about kidney cancer, it helps to know about the kidneys and what they do.

The kidneys are a pair of bean-shaped organs, each about the size of a fist. They are attached to the upper back wall of the abdomen. One kidney is just to the left and the other just to the right of the backbone. The lower rib cage protects the kidneys.

Small glands called adrenal glands sit above each of the kidneys. Each kidney and adrenal gland is surrounded by fat and a thin, fibrous layer known as Gerota’s fascia.
The kidneys’ main job is to filter the blood coming in from the renal arteries to remove excess water, salt, and waste products. These substances become urine. Urine leaves the kidneys through long slender tubes called ureters, which connect to the bladder. The place where the ureter meets the kidney is called the renal pelvis. The urine is then stored in the bladder until you urinate (pee).

The kidneys also have other jobs:

- They help control blood pressure by making a hormone called renin.
- They help make sure the body has enough red blood cells by making a hormone called erythropoietin. This hormone tells the bone marrow to make more red blood cells.

Our kidneys are important, but we actually need less than one complete kidney to function. Many people in the United States are living normal, healthy lives with just one kidney.

Some people do not have any working kidneys at all, and survive with the help of a medical procedure called dialysis. The most common form of dialysis uses a specially designed machine that filters blood much like a real kidney would.
Renal cell carcinoma

Renal cell carcinoma (RCC), also known as renal cell cancer or renal cell adenocarcinoma, is by far the most common type of kidney cancer. About 9 out of 10 kidney cancers are renal cell carcinomas.

Although RCC usually grows as a single tumor within a kidney, sometimes there are 2 or more tumors in one kidney or even tumors in both kidneys at the same time.

There are several subtypes of RCC, based mainly on how the cancer cells look under a microscope. Knowing the subtype of RCC can be a factor in deciding treatment and can also help your doctor determine if your cancer might be due to an inherited genetic syndrome.

Clear cell renal cell carcinoma

This is the most common form of renal cell carcinoma. About 7 out of 10 people with RCC have this kind of cancer. When seen under a microscope, the cells that make up clear cell RCC look very pale or clear.

Papillary renal cell carcinoma

This is the second most common subtype – about 1 in 10 RCCs are of this type. These cancers form little finger-like projections (called papillae) in some, if not most, of the tumor. Some doctors call these cancers chromophilic because the cells take in certain dyes and look pink under the microscope.

Chromophobe renal cell carcinoma

This subtype accounts for about 5% (5 cases in 100) of RCCs. The cells of these cancers are also pale, like the clear cells, but are much larger and have certain other features that can be recognized.

Rare types of renal cell carcinoma

These subtypes are very rare, each making up less than 1% of RCCs:

- Collecting duct RCC
- Multilocular cystic RCC
- Medullary carcinoma
- Mucinous tubular and spindle cell carcinoma
- Neuroblastoma-associated RCC
Unclassified renal cell carcinoma

Rarely, renal cell cancers are labeled as unclassified because the way they look doesn’t fit into any of the other categories or because there is more than one type of cell present.

Other types of kidney cancers

Other types of kidney cancers include transitional cell carcinomas, Wilms tumors, and renal sarcomas.

Transitional cell carcinoma

Of every 100 cancers in the kidney, about 5 to 10 are transitional cell carcinomas (TCCs), also known as urothelial carcinomas.

Transitional cell carcinomas don’t start in the kidney itself, but in the lining of the renal pelvis (where the urine goes before it enters the ureter). This lining is made up of cells called transitional cells that look like the cells that line the ureters and bladder. Cancers that develop from these cells look like other urothelial carcinomas, such as bladder cancer, under the microscope. Like bladder cancer, these cancers are often linked to cigarette smoking and being exposed to certain cancer-causing chemicals in the workplace.

People with TCC often have the same signs and symptoms as people with renal cell cancer – blood in the urine and, sometimes, back pain.

These cancers are usually treated by surgically removing the whole kidney and the ureter, as well as the portion of the bladder where the ureter attaches. Smaller, less aggressive cancers can sometimes be treated with less surgery. Chemotherapy (chemo) is sometimes given before or after surgery, depending on how much cancer is found. The chemo given is the same as that used for bladder cancer. It’s important to talk with your doctor to be aware of your options and the benefits and risks of each treatment.

About 9 out of 10 TCCs of the kidney are cured if they are found at an early stage. The chances for cure are lower if the tumor has grown into the ureter wall or main part of the kidney or if it looks more aggressive (high grade) when seen under a microscope.

After treatment, follow-up visits to your doctor for monitoring with cystoscopy (looking into the bladder with a lighted tube) and imaging tests are very important because TCC can come back in the bladder, as well as other places in the body.

For more information about transitional cell carcinoma, see Bladder Cancer.

Wilms tumor (nephroblastoma)

Wilms tumors almost always occur in children. This type of cancer is very rare among adults. To learn more about this type of cancer, see Wilms Tumor.
Renal sarcoma

Renal sarcomas are a rare type of kidney cancer that begin in the blood vessels or connective tissue of the kidney. They make up less than 1% of all kidney cancers. Sarcomas are discussed in more detail in *Sarcoma- Adult Soft Tissue Cancer*.

Benign (non-cancerous) kidney tumors

Some kidney tumors are benign (non-cancerous). This means they do not metastasize (spread) to other parts of the body, although they can still grow and cause problems.

Benign kidney tumors can be treated by removing or destroying them, using many of the same treatments that are also used for kidney cancers, such as surgery, radiofrequency ablation, and arterial embolization. The choice of treatment depends on many factors, such as the size of the tumor and if it is causing any symptoms, the number of tumors, whether tumors are in both kidneys, and the person’s general health.

Renal adenoma

Renal adenomas are the most common benign kidney tumors. They are small, slow-growing tumors that are often found on imaging tests (such as CT scans) when the doctor is looking for something else. Seen with a microscope, they look a lot like low-grade renal cell carcinomas.

In rare cases, tumors first thought to be renal adenomas turn out to be small renal cell carcinomas. Because they are hard to tell apart, suspected adenomas are often treated like renal cell cancers.

Oncocytoma

Oncocytomas are benign kidney tumors that can sometimes grow quite large. As with renal adenomas, it can sometimes be hard to tell them apart from kidney cancers. Oncocytomas do not normally spread to other organs, so surgery often cures them.

Angiomyolipoma

Angiomyolipomas are rare. They often develop in people with tuberous sclerosis, a genetic condition that also affects the heart, eyes, brain, lungs, and skin. These tumors are made up of different types of connective tissues (blood vessels, smooth muscles, and fat). If they aren’t causing any symptoms, they can often just be watched closely. If they start causing problems (like pain or bleeding), they may need to be treated.

The rest of this document focuses on renal cell carcinoma and not on less common types of kidney tumors.
What are the key statistics about kidney cancer?

The American Cancer Society’s most recent estimates for kidney cancer in the United States are for 2016:

- About 62,700 new cases of kidney cancer (39,650 in men and 23,050 in women) will occur.
- About 14,240 people (9,240 men and 5,000 women) will die from this disease.

These numbers include all types of kidney and renal pelvis cancers.

Most people with kidney cancer are older. The average age of people when they are diagnosed is 64. Kidney cancer is very uncommon in people younger than age 45.

Kidney cancer is among the 10 most common cancers in both men and women. Overall, the lifetime risk for developing kidney cancer is about 1 in 63 (1.6%). This risk is higher in men than in women. A number of other factors (described in “What are the risk factors for kidney cancer?”) also affect a person’s risk.

For reasons that are not totally clear, the rate of new kidney cancers has been rising since the 1990s, although this seems to have leveled off in the past few years. Part of this rise was probably due to the use of newer imaging tests such as CT scans, which picked up some cancers that might never have been found otherwise. The death rates for these cancers have gone down slightly since the middle of the 1990s.

Survival rates for people diagnosed with kidney cancer are discussed in “Survival rates for kidney cancer by stage.”

Visit the American Cancer Society’s Cancer Statistics Center for more key statistics.

What are the risk factors for kidney cancer?

A risk factor is anything that affects your chance of getting a disease such as cancer. Different cancers have different risk factors. Some risk factors, like smoking, can be changed. Others, like your age or family history, can’t be changed.

But having a risk factor, or even several risk factors, does not mean that you will get the disease. And some people who get the disease may have few or no known risk factors. Even if a person with kidney cancer has a risk factor, it is often very hard to know how much that risk factor contributed to the cancer.

Scientists have found several risk factors that could make you more likely to develop kidney cancer.
Lifestyle-related and job-related risk factors

Smoking

Smoking increases the risk of developing renal cell carcinoma (RCC). The increased risk seems to be related to how much you smoke. The risk drops if you stop smoking, but it takes many years to get to the risk level of someone who never smoked.

Obesity

People who are very overweight have a higher risk of developing RCC. Obesity may cause changes in certain hormones that can lead to RCC.

Workplace exposures

Many studies have suggested that workplace exposure to certain substances increases the risk for RCC. Some of these substances are cadmium (a type of metal), some herbicides, and organic solvents, particularly trichloroethylene.

Genetic and hereditary risk factors

Some people inherit a tendency to develop certain types of cancer. The DNA in each of your cells that you inherit from your parents may have certain changes that give you this tendency. Some rare inherited conditions can cause kidney cancer. It is important that people who have hereditary causes of RCC see their doctors often, particularly if they have already been diagnosed with RCC. Some doctors recommend regular imaging tests (such as CT scans) to look for new kidney tumors in these people.

People who have the conditions listed here have a much higher risk for getting kidney cancer, although they account for only a small portion of cases overall.

von Hippel-Lindau disease

People with this condition often develop several kinds of tumors and cysts (fluid-filled sacs) in different parts of the body. They have an increased risk for developing clear cell RCC, especially at a younger age. They may also have benign tumors in their eyes, brain, spinal cord, pancreas and other organs; and a type of adrenal gland tumor called *pheochromocytoma*. This condition is caused by mutations (changes) in the *VHL* gene.

Hereditary papillary renal cell carcinoma

People with this condition have a tendency to develop one or more papillary RCCs, but they do not have tumors in other parts of the body, as is the case with the other inherited conditions listed here. This disorder is usually linked to changes in the *MET* gene.
Hereditary leiomyoma-renal cell carcinoma

People with this syndrome develop smooth muscle tumors called *leiomyomas* (fibroids) of the skin and uterus (in women) and have a higher risk for developing papillary RCCs. It has been linked to changes in the *FH* gene.

Birt-Hogg-Dube (BHD) syndrome

People with this syndrome develop many small benign skin tumors and have an increased risk of different kinds of kidney tumors, including RCCs and oncocytomas. They may also have benign or malignant tumors of several other tissues. The gene linked to BHD is known as *FLCN*.

Familial renal cancer

People with this syndrome develop tumors called *paragangliomas* of the head and neck region, as well as tumors known as *pheochromocytomas* of the adrenal glands and other areas. They also tend to get kidney cancer in both kidneys before age 40. It is caused by defects in the genes *SDHB* and *SDHD*.

These gene defects can also cause something called *Cowden-like syndrome*. People with this syndrome have a high risk of breast, thyroid and kidney cancers.

Hereditary renal oncocytoma

Some people inherit the tendency to develop a kidney tumor called an *oncocytoma*, which is almost always benign (not cancer).

Other risk factors

Family history of kidney cancer

People with a strong family history of renal cell cancer (without one of the known inherited conditions listed previously) have a higher chance of developing this cancer. This risk is highest in brothers or sisters of those with the cancer. It’s not clear whether this is due to shared genes, something that both people were exposed to in the environment, or both.

High blood pressure

The risk of kidney cancer is higher in people with high blood pressure. Some studies have suggested that certain medicines used to treat high blood pressure may raise the risk of kidney cancer, but it is hard to tell if it’s the condition or the medicine (or both) that may be the cause of the increased risk.
Certain medicines

Phenacetin: Once a popular non-prescription pain reliever, this drug has been linked to RCC in the past. Because this medicine has not been available in the United States for over 20 years, this no longer appears to be a major risk factor.

Diuretics: Some studies have suggested that diuretics (water pills) may be linked to a small increase in the risk of RCC. It is not clear whether the cause is the drugs or the high blood pressure they treat. If you need to take diuretics, don’t avoid them to try to reduce the risk of kidney cancer.

Advanced kidney disease

People with advanced kidney disease, especially those needing dialysis, have a higher risk of RCC. Dialysis is a treatment used to remove toxins from your body if the kidneys do not work properly.

Gender

RCC is about twice as common in men as in women. Men are more likely to be smokers and are more likely to be exposed to cancer-causing chemicals at work, which may account for some of the difference.

Race

African Americans and American Indians/Alaska Natives have slightly higher rates of RCC than do whites. The reasons for this are not clear.

Do we know what causes kidney cancer?

Although many risk factors can increase the chance of developing renal cell cancer (RCC), it is not yet clear how some of these risk factors cause kidney cells to become cancerous.

Changes (mutations) in genes

Researchers are starting to understand how certain changes in the DNA inside normal kidney cells can cause them to become cancerous. DNA is the chemical that makes up our genes – the instructions for how our cells function. We usually look like our parents because they are the source of our DNA. However, DNA affects more than how we look.

Some genes control when our cells grow, divide into new cells, and die. Certain genes that help cells grow, divide, and stay alive are called *oncogenes*. Others that slow down cell division, or cause cells to die at the right time, are called *tumor suppressor genes*. Cancers can be caused by DNA changes that turn on oncogenes or turn off tumor suppressor genes.
Inherited gene mutations

Certain *inherited* DNA changes can lead to conditions running in some families that increase the risk of kidney cancer. These syndromes, which cause a small portion of all kidney cancers, were described in “What are the risk factors for kidney cancer?”

For example, *VHL*, the gene that causes von Hippel-Lindau (VHL) disease, is a tumor suppressor gene. It normally helps keep cells from growing out of control. Mutations (changes) in this gene can be inherited from parents. When the *VHL* gene is mutated, it is no longer able to suppress abnormal growth, and kidney cancer is more likely to develop. The genes linked to hereditary leiomyoma and renal cell carcinoma (the *FH* gene), Birt-Hogg-Dube syndrome (the *FLCN* gene), and familial renal cancer (the *SDHB* and *SDHD* genes) are also tumor suppressor genes, and inherited changes in these genes also lead to an increased risk of kidney cancer.

People with hereditary papillary renal cell carcinoma have inherited changes in the *MET* oncogene that cause it to be turned on all the time. This can lead to uncontrolled cell growth and makes the person more likely to develop papillary RCC.

Acquired gene mutations

Most DNA mutations related to kidney cancer, however, occur during a person’s life rather than having been inherited. These *acquired* changes in oncogenes and/or tumor suppressor genes may result from factors such as exposure to cancer-causing chemicals (like those found in tobacco smoke), but often what causes these changes is not known. Many gene changes are probably just random events that sometimes happen inside a cell, without having an outside cause.

Most people with sporadic (non-inherited) clear cell RCC have changes in the *VHL* gene in their tumor cells that have caused it to stop working properly. These changes are acquired during life rather than being inherited.

Other gene changes may also cause renal cell carcinomas. Researchers continue to look for these changes.

Progress has been made in understanding how tobacco increases the risk for developing kidney cancer. Your lungs absorb many of the cancer-causing chemicals in tobacco smoke into the bloodstream. Because your kidneys filter this blood, many of these chemicals become concentrated in the kidneys. Several of these chemicals are known to damage kidney cell DNA in ways that can cause the cells to become cancerous.

Obesity, another risk factor for this cancer, alters the balance of some of the body’s hormones. Researchers are now learning how certain hormones help control the growth (both normal and abnormal) of many different tissues in the body, including the kidneys.
Can kidney cancer be prevented?

In many cases, the cause of kidney cancer is not known. In some other cases (such as with inherited conditions that raise kidney cancer risk), even when the cause is known it may not be preventable. But there are some ways you may be able to reduce your risk of this disease.

Cigarette smoking is responsible for a large percentage of cases, so stopping smoking may lower your risk.

Obesity and high blood pressure are also risk factors for renal cell cancer. Maintaining a healthy weight by exercising and choosing a diet high in fruits and vegetables, and getting treatment for high blood pressure may also reduce your chance of getting this disease.

Finally, avoiding workplace exposure to harmful substances such as cadmium and organic solvents may reduce your risk for renal cell cancer.

Can kidney cancer be found early?

Many kidney cancers are found fairly early, while they are still confined to the kidney, but others are found at a more advanced stage. There are a few reasons for this:

- These cancers can sometimes grow quite large without causing any pain or other problems.

- Because the kidneys are deep inside the body, small kidney tumors cannot be seen or felt during a physical exam.

- There are no recommended screening tests for kidney cancer in people who are not at increased risk. This is because no test has been shown to lower the overall risk of dying from kidney cancer.

Some tests can find some kidney cancers early, but none of these is recommended to screen for kidney cancer in people at average risk.

A routine urine test (urinalysis), which is sometimes part of a complete medical checkup, may find small amounts of blood in the urine of some people with early kidney cancer. But many things other than kidney cancer cause blood in the urine, including urinary tract infections, bladder infections, bladder cancer, and benign (non-cancerous) kidney conditions such as kidney stones. And some people with kidney cancer do not have blood in their urine until the cancer is quite large and might have spread to other parts of the body.

Imaging tests such as computed tomography (CT) scans and magnetic resonance imaging (MRI) scans can often find small kidney cancers, but these tests are expensive. Ultrasound is less expensive and can also detect some early kidney cancers. One problem
with these tests is that they can’t always tell benign tumors from small renal cell carcinomas.

Often, kidney cancers are found incidentally (by accident) during imaging tests for some other illness such as gallbladder disease. These cancers usually are causing no pain or other symptoms when they are found. The survival rate for these kidney cancers is very high because they are usually found at a very early stage.

For people at increased risk of kidney cancer

People who have certain inherited conditions, such as von Hippel-Lindau disease, have a higher risk of kidney cancer. Doctors often recommend that these people get regular imaging tests such as CT, MRI, or ultrasound scans to look for kidney tumors. Kidney cancers that are found early with these tests can often be cured.

It is important to tell your doctor if any of your family members (blood relatives) has or had kidney cancer, especially at a younger age, or if they have been diagnosed with an inherited condition linked to this cancer, such as von Hippel-Lindau disease. Your doctor may recommend that you consider genetic counseling and testing to see if you have the condition.

Before having genetic tests, it’s important to talk with a genetic counselor so that you understand what the tests can – and can’t – tell you, and what any results would mean. Genetic tests look for the gene mutations that cause these conditions in your DNA. They are used to diagnose these inherited conditions, not kidney cancer itself. Your risk may be increased if you have one of these conditions, but it does not mean that you have (or definitely will get) kidney cancer. For more information on genetic testing, see Genetic Testing: What You Need to Know.

Some doctors also recommend that people with kidney diseases treated by long-term dialysis have regular tests to look for kidney cancer.

Signs and symptoms of kidney cancer

Early kidney cancers do not usually cause any signs or symptoms, but larger ones might. Some possible signs and symptoms of kidney cancer include:

- Blood in the urine (hematuria)
- Low back pain on one side (not caused by injury)
- A mass (lump) on the side or lower back
- Fatigue (tiredness)
- Loss of appetite
- Weight loss not caused by dieting
• Fever that is not caused by an infection and that doesn’t go away
• Anemia (low red blood cell counts)

These signs and symptoms can be caused by kidney cancer (or another type of cancer), but more often they are caused by other, benign, diseases. For example, blood in the urine is most often caused by a bladder or urinary tract infection or a kidney stone. Still, if you have any of these symptoms, see a doctor so that the cause can be found and treated, if needed.

How is kidney cancer diagnosed?

Kidney cancer might be found because of signs or symptoms a person is having, or it might be found because of lab tests or imaging tests a person is getting for another reason. If cancer is suspected, tests will be needed to confirm the diagnosis.

Medical history and physical exam

If you have any signs or symptoms that suggest you might have kidney cancer, your doctor will want to take a complete medical history to check for risk factors and to learn more about your symptoms.

A physical exam can provide information about signs of kidney cancer and other health problems. For example, the doctor may be able to feel an abnormal mass when he or she examines your abdomen.

If symptoms or the results of the physical exam suggest you might have kidney cancer, more tests will probably be done. These might include lab tests and imaging tests.

Lab tests

Lab tests cannot show for sure if a person has kidney cancer, but they can sometimes give the first hint that there may be a kidney problem. If cancer has already been diagnosed, they are also done to get a sense of a person’s overall health and to help tell if the cancer might have spread to other areas. They also can help show if a person is healthy enough to have an operation.

Urinalysis

Urinalysis (urine testing) is sometimes part of a complete physical exam, but it may not be done as a part of more routine physicals. This test may be done if your doctor suspects a kidney problem.

Microscopic and chemical tests are done on a urine sample to look for small amounts of blood and other substances not seen with the naked eye. About half of all patients with renal cell cancer will have blood in their urine. If the patient has transitional cell carcinoma (in the renal pelvis, the ureter, or the bladder), sometimes a special
microscopic exam of the urine sample (called urine cytology) will show actual cancer cells in the urine.

Complete blood count

The complete blood count (CBC) is a test that measures the amounts of different cells in the blood, such as red blood cells, white blood cells, and platelets. This test result is often abnormal in people with renal cell cancer. Anemia (having too few red blood cells) is very common. Less often, a person may have too many red blood cells (called polycythemia) because the kidney cancer cells make a hormone (erythropoietin) that causes the bone marrow to make more red blood cells.

Blood counts are also important to make sure a person is healthy enough for surgery.

Blood chemistry tests

Blood chemistry tests are usually done in people who might have kidney cancer, because the cancer can affect the levels of certain chemicals in the blood. For example, high levels of liver enzymes are sometimes found. High blood calcium levels may indicate that cancer has spread to the bones, and may therefore prompt a doctor to order a bone scan. Blood chemistry tests also look at kidney function, which is especially important if certain imaging tests or if surgery is planned.

Imaging tests

Imaging tests use x-rays, magnetic fields, sound waves, or radioactive substances to create pictures of the inside of your body. Imaging tests can be done for a number of reasons:

- To help find out whether a suspicious area might be cancer
- To learn how far cancer has spread
- To help determine if treatment has been effective
- To look for signs of the cancer coming back

Unlike most other cancers, doctors can often diagnose kidney cancer fairly certainly based on imaging tests without doing a biopsy (removing a sample of the tumor to be looked at under a microscope). In some patients, however, a biopsy may be needed to be sure.

Computed tomography (CT) scans, magnetic resonance imaging (MRI) scans, and ultrasound can be very helpful in diagnosing most kinds of kidney tumors, although patients rarely need all of these tests. Other tests described here, such as chest x-rays and bone scans, are more often used to help determine if the cancer has spread (metastasized) to other parts of the body.
Computed tomography (CT) scan

The CT scan uses x-rays to produce detailed cross-sectional images of your body. It is one of the most useful tests for finding and looking at a tumor in your kidney. It can provide precise information about the size, shape, and position of a tumor. It is also useful in checking to see if a cancer has spread to nearby lymph nodes or to organs and tissues outside the kidney. If a kidney biopsy is needed, this test can also be used to guide a biopsy needle into the mass to obtain a sample.

Instead of taking one picture, like a regular x-ray, a CT scanner takes many pictures as it rotates around you. A computer then combines these pictures into images of slices of the part of your body being studied.

A CT scanner has been described as a large donut, with a narrow table that slides in and out of the middle opening. You will need to lie still on the table while the scan is being done. CT scans take longer than regular x-rays, and you might feel a bit confined by the ring while the pictures are being taken.

Before the test, you might be asked to drink 1 to 2 pints of a liquid called oral contrast. This helps outline the intestine so that certain areas are not mistaken for tumors. You might also receive an IV (intravenous) line through which a different kind of contrast dye (IV contrast) is injected. This helps better outline structures in your body. The injection may cause some flushing (a feeling of warmth, especially in the face). Some people are allergic and get hives. Rarely, more serious reactions like trouble breathing or low blood pressure can occur. Be sure to tell the doctor if you have any allergies or if you have ever had a reaction to any contrast material used for x-rays.

CT contrast can damage the kidneys. This happens more often in patients whose kidneys are not working well in the first place. Because of this, your kidney function will be checked with a blood test before you get IV contrast.

Magnetic resonance imaging (MRI) scan

Like CT scans, MRI scans provide detailed images of soft tissues in the body. But MRI scans use radio waves and strong magnets instead of x-rays. The energy from the radio waves is absorbed and then released in a pattern formed by the type of body tissue and by certain diseases. A computer translates the pattern into a very detailed image of parts of the body.

A contrast material called gadolinium is often injected into a vein before the scan to better see details. This contrast material isn’t used in people on dialysis, because in those people it can rarely cause a severe side effect called nephrogenic systemic fibrosis.

MRI scans take longer than CT scans – often up to an hour – and are a little more uncomfortable. You have to lie inside a narrow tube, which is confining and can upset people with claustrophobia (a fear of enclosed spaces). Special, open MRI machines can sometimes help with this if needed, but the drawback is that the pictures may not be as
clear. MRI machines also make buzzing and clicking noises that many people find disturbing. Some centers provide headphones with music to block this noise out.

MRI scans are used less often than CT scans in people with kidney cancer. They may be done in cases where CT scans aren’t practical, such as if a person can’t have the CT contrast dye because they have an allergy to it or they don’t have good kidney function. MRI scans may also be done if there’s a chance that the cancer has grown into major blood vessels in the abdomen (like the inferior vena cava), because they provide a better picture of blood vessels than CT scans. Finally, they may be used to look for possible spread of cancer to the brain or spinal cord if a person has symptoms that suggest this might be the case.

Ultrasound

Ultrasound uses sound waves to create images of internal organs. For this test, a small, microphone-like instrument called a *transducer* is placed on the skin near the kidney after a gel is applied. The transducer gives off sound waves and picks up the echoes as they bounce off the tissues in the kidney. The echoes are converted by a computer into a black and white image that is displayed on a computer screen. This test is painless and does not expose you to radiation.

Ultrasound can help find a kidney mass and show if it is solid or filled with fluid (kidney tumors are more likely to be solid). Different echo patterns also can help doctors tell some types of benign and malignant kidney tumors from one another.

If a kidney biopsy is needed, this test can also be used to guide a biopsy needle into the mass to obtain a sample.

Positron emission tomography (PET) scan

In a PET scan, a form of radioactive sugar (known as *fluorodeoxyglucose* or *FDG*) is injected into the blood. The amount of radioactivity used is very low and will pass out of the body over the next day or so. Because cancer cells in the body are growing quickly, they absorb more of the radioactive sugar. After about an hour, you will be moved onto a table in the PET scanner. You lie on the table for about 30 minutes while a special camera creates a picture of areas of radioactivity in the body. The picture is not finely detailed like a CT or MRI scan, but it provides helpful information about your body.

This test can help spot small collections of cancer cells and can be useful in seeing if the cancer has spread to lymph nodes near the kidney. PET scans can also be useful if your doctor thinks the cancer may have spread but doesn’t know where. PET scans can be used instead of doing multiple x-rays because they scan your whole body.

Special machines can perform both a PET and CT scan at the same time (PET/CT scan). This lets the doctor compare areas of higher radioactivity (suggesting an area of cancer) on the PET with the more detailed image from the CT. Still, PET and PET/CT scans are not a standard part of the work-up for kidney cancers.
Intravenous pyelogram

An intravenous pyelogram (IVP) is an x-ray of the urinary system taken after a special dye is injected into a vein. The kidneys remove the dye from the bloodstream and it then concentrates in the ureters and bladder. An IVP can help find abnormalities of the renal pelvis and ureter, such as cancer, but this test is not often used when kidney cancer is suspected.

Angiography

This type of x-ray also uses a contrast dye, although not the same as the one used for an IVP. A catheter is usually threaded up a large artery in your leg into the artery leading to your kidney (renal artery). The dye is then injected into the artery, and x-rays are taken to identify and map the blood vessels that supply a kidney tumor.

This test can help in planning surgery for some patients. Angiography can also help diagnose renal cancers since the blood vessels usually have a special appearance with this test.

Angiography can often be done as a part of a CT or MRI scan, instead of as a separate x-ray test. This means less contrast dye is used, which is helpful since the dye can damage kidney function further if it is given to people whose kidneys aren’t working well.

Chest x-ray

If kidney cancer has been diagnosed (or is suspected), your chest may be x-rayed to see if cancer has metastasized (spread) to your lungs. The lungs are a common site of kidney cancer metastasis, but this is not very likely unless the cancer is far advanced.

This x-ray can be done in any outpatient setting. If the results are normal, you probably don’t have cancer in your lungs. Still, if your doctor has reason to suspect lung metastasis (based on symptoms like shortness of breath or a cough), you may have a chest CT scan instead of a regular chest x-ray, because it can show more detail.

Bone scan

A bone scan can help show if a cancer has spread to your bones. It might be done if there is reason to think the cancer might have spread to the bones (because of symptoms such as bone pain or blood test results showing an increased calcium level). PET scans can usually show the spread of cancer to bones as well, so if you’ve had a PET scan you might not need a bone scan.

For this test, a small amount of low-level radioactive material is injected into a vein (intravenously, or IV). The substance settles in areas of damaged bone throughout the entire skeleton in a couple of hours. You then lie on a table for about 30 minutes while a special camera detects the radioactivity and creates a picture of your skeleton.
Areas of active bone changes attract the radioactivity and show up as “hot spots” on your skeleton. These areas might suggest cancer spread, but arthritis or other bone diseases can also cause the same pattern. To distinguish between these conditions, your cancer care team may use other imaging tests such as simple x-rays or MRI scans to get a better look at the areas that light up, or they may even take biopsy samples of the bone.

Fine needle aspiration and needle core biopsy

Unlike with most other types of cancer, biopsies are not often used to diagnose kidney tumors. Imaging tests usually provide enough information for a surgeon to decide if an operation is needed. The diagnosis is then confirmed when part of the kidney that was removed is looked at under a microscope.

However, a biopsy is sometimes used to get a small sample of cells from an area that may be cancer when the results of imaging tests are not clear enough to warrant surgery. Biopsy may also be done to confirm a cancer diagnosis if a person might not be treated with surgery, such as with small tumors that will be watched and not treated, or when other treatments are being considered.

Fine needle aspiration (FNA) and needle core biopsy are 2 types of kidney biopsies that may be done. For these types of biopsies a needle is put through the skin to take a sample of cells (called a *percutaneous biopsy*).

For either type of biopsy, the skin where the needle is to be inserted is first numbed with local anesthesia. The doctor directs the biopsy needle into the area while looking at your kidney with either ultrasound or CT scans. Unlike ultrasound, CT doesn’t provide a continuous picture, so the needle is inserted in the direction of the mass, a CT image is taken, and the direction of the needle is guided based on the image. This is repeated a few times until the needle is within the mass.

For FNA, a small sample of the target area is sucked (aspirated) through the needle into a syringe. The needle used for FNA biopsy is thinner than the ones used for routine blood tests. The needle used in core biopsies is larger than that used in FNA biopsy. It removes a small cylinder of tissue. Either type of sample is checked under the microscope to see if cancer cells are present.

In cases where the doctors think kidney cancer might have spread to other sites, they may take a sample of the metastatic site instead of the kidney.

Fuhrman grade

The Fuhrman grade is found by looking at kidney cancer cells (taken during a biopsy or during surgery) under a microscope. Many doctors use it to describe how quickly the cancer is likely to grow and spread. The grade is based on how closely the cancer cells’ nuclei (the part of the cell in which DNA is stored) look like those of normal kidney cells.

Renal cell cancers are usually graded on a scale of 1 through 4. Grade 1 renal cell cancers have cell nuclei that look a lot like normal kidney cell nuclei. These cancers usually grow
and spread slowly and tend to have a good prognosis (outcome). At the other extreme, grade 4 renal cell cancer nuclei look quite different from normal kidney cell nuclei. These cancers have a worse prognosis.

Although the cell type and grade can sometimes help predict prognosis (outlook), the cancer’s stage is by far the best predictor of survival. The stage describes the cancer’s size and how far it has spread beyond the kidney. Staging is explained in “How is kidney cancer staged?”

How is kidney cancer staged?

The stage of a cancer describes how far it has spread. Your treatment and prognosis (outlook) depend, to a large extent, on the cancer’s stage.

The stage is based on the results of the physical exam, biopsies, and imaging tests (CT scan, chest x-ray, PET scan, etc.), which are described in “How is kidney cancer diagnosed?”

There are actually 2 types of staging for kidney cancer:

- The clinical stage is your doctor’s best estimate of the extent of your disease, based on the results of the physical exam, lab tests, and any imaging tests you have had.

- If you have surgery, your doctors can also determine the pathologic stage, which is based on the same factors as the clinical stage, plus what is found during surgery and examination of the removed tissue.

If you have surgery, the stage of your cancer might actually change afterward (if cancer were found to have spread further than was suspected, for example). Pathologic staging is likely to be more accurate than clinical staging, because it gives your doctor a firsthand impression of the extent of your disease.

AJCC (TNM) staging system

A staging system is a standard way for the cancer care team to describe the extent of the cancer. The most common staging system for kidney cancer is that of the American Joint Committee on Cancer (AJCC), sometimes known as the TNM system. (Cancers that start in the renal pelvis have a different AJCC staging system, which is not described here.)

The TNM system describes 3 key pieces of information:

- **T** indicates the size of the main (primary) tumor and whether it has grown into nearby areas.

- **N** describes the extent of spread to nearby (regional) lymph nodes. Lymph nodes are small bean-sized collections of immune system cells to which cancers often spread first.
• **M** indicates whether the cancer has spread (**metastasized**) to other parts of the body. (The most common sites of spread are to the lungs, bones, liver, brain, and distant lymph nodes.)

Numbers or letters appear after **T**, **N**, and **M** to provide more details about each of these factors. The numbers 0 through 4 indicate increasing severity. The letter **X** means “cannot be assessed because the information is not available.”

T categories for kidney cancer

TX: The primary tumor cannot be assessed (information not available).

T0: No evidence of a primary tumor.

T1: The tumor is only in the kidney and is no larger than 7 centimeters (cm), or a little less than 3 inches, across

• **T1a:** The tumor is 4 cm (about 1½ inches) across or smaller and is only in the kidney.

• **T1b:** The tumor is larger than 4 cm but not larger than 7 cm across and is only in the kidney.

T2: The tumor is larger than 7 cm across but is still only in the kidney.

• **T2a:** The tumor is more than 7 cm but not more than 10 cm (about 4 inches) across and is only in the kidney

• **T2b:** The tumor is more than 10 cm across and is only in the kidney

T3: The tumor is growing into a major vein or into tissue around the kidney, but it is not growing into the adrenal gland (on top of the kidney) or beyond Gerota’s fascia (the fibrous layer that surrounds the kidney and nearby fatty tissue).

• **T3a:** The tumor is growing into the main vein leading out of the kidney (renal vein) or into fatty tissue around the kidney

• **T3b:** The tumor is growing into the part of the large vein leading into the heart (vena cava) that is within the abdomen.

• **T3c:** The tumor has grown into the part of the vena cava that is within the chest or it is growing into the wall of the vena cava.

T4: The tumor has spread beyond Gerota’s fascia (the fibrous layer that surrounds the kidney and nearby fatty tissue). The tumor may have grown into the adrenal gland (on top of the kidney).

N categories for kidney cancer

NX: Regional (nearby) lymph nodes cannot be assessed (information not available).

N0: No spread to nearby lymph nodes.
N1: Tumor has spread to nearby lymph nodes.

M categories for kidney cancer

M0: There is no spread to distant lymph nodes or other organs.

M1: Distant metastasis is present; includes spread to distant lymph nodes and/or to other organs. Kidney cancer most often spreads to the lungs, bones, liver, or brain.

Stage grouping

Once the T, N, and M categories have been assigned, this information is combined to assign an overall stage of I, II, III, or IV. The stages identify cancers that have a similar prognosis (outlook) and thus are treated in a similar way. Patients with lower stage numbers tend to have a better prognosis.

Stage I: T1, N0, M0

The tumor is 7 cm across or smaller and is only in the kidney (T1). There is no spread to lymph nodes (N0) or distant organs (M0).

Stage II: T2, N0, M0

The tumor is larger than 7 cm across but is still only in the kidney (T2). There is no spread to lymph nodes (N0) or distant organs (M0).

Stage III: Either of the following:

T3, N0, M0: The tumor is growing into a major vein (like the renal vein or the vena cava) or into tissue around the kidney, but it is not growing into the adrenal gland or beyond Gerota’s fascia (T3). There is no spread to lymph nodes (N0) or distant organs (M0).

T1 to T3, N1, M0: The main tumor can be any size and may be outside the kidney, but it has not spread beyond Gerota’s fascia. The cancer has spread to nearby lymph nodes (N1) but has not spread to distant lymph nodes or other organs (M0).

Stage IV: Either of the following:

T4, any N, M0: The main tumor is growing beyond Gerota’s fascia and may be growing into the adrenal gland on top of the kidney (T4). It may or may not have spread to nearby lymph nodes (any N). It has not spread to distant lymph nodes or other organs (M0).

Any T, Any N, M1: The main tumor can be any size and may have grown outside the kidney (any T). It may or may not have spread to nearby lymph nodes (any N). It has spread to distant lymph nodes and/or other organs (M1).
Other staging and prognostic systems

The TNM staging system is useful, but some doctors have pointed out that there are factors other than the extent of the cancer that should be considered when determining prognosis and treatment.

University of California Los Angeles (UCLA) Integrated Staging System

This is a more complex system that came out in 2001. It was meant to improve upon the AJCC staging that was then in place. Along with the stage of the cancer, it takes into account a person’s overall health and the Fuhrman grade of the tumor. These factors are combined to divide people into low-, intermediate-, and high-risk groups. Ask your doctor if he or she uses this system and how it might apply to you.

Survival predictors

The stage of the cancer is an important predictor of survival, but other factors are also important. For example, researchers have linked certain factors with shorter survival times in people with kidney cancer that has spread outside the kidney. These include:

- High blood lactate dehydrogenase (LDH) level
- High blood calcium level
- Anemia (low red blood cell count)
- Cancer spread to 2 or more distant sites
- Less than a year from diagnosis to the need for systemic treatment (targeted therapy, immunotherapy, or chemotherapy)
- Poor performance status (a measure of how well a person can do normal daily activities)

People with none of the above factors are considered to have a good prognosis; 1 or 2 factors are considered intermediate prognosis, and 3 or more of these factors are considered to have a poor prognosis and may be more or less likely to benefit from certain treatments.

Survival rates for kidney cancer by stage

Survival rates are often used by doctors as a standard way of discussing a person’s prognosis (outlook). Some people with cancer may want to know the survival statistics for people in similar situations, while others may not find the numbers helpful, or may even not want to know them. If you decide that you don’t want to know them, stop reading here and skip to the next section.
The 5-year survival rate refers to the percentage of patients who live at least 5 years after their cancer is diagnosed. Of course, many people live much longer than 5 years (and many are cured). Also, some people die from causes other than their cancer.

In order to get 5-year survival rates, doctors have to look at people who were treated at least 5 years ago. Treatments for kidney cancer have changed in recent years, which may result in a better outlook for people now being diagnosed with kidney cancer.

Survival rates are often based on previous outcomes of large numbers of people who had the disease, but they cannot predict what will happen in any person’s case. Many other factors can affect a person’s outlook, such as the grade of the cancer, the treatment received, and the patient’s age and overall health. Your doctor can tell you how the numbers below may apply to you, as he or she is familiar with your situation.

Survival rates by AJCC TNM stage

The numbers below come from the National Cancer Data Base and are based on patients first diagnosed in the years 2001 and 2002. These are observed survival rates. They include people diagnosed with kidney cancer who may have later died from other causes, such as heart disease. People with kidney cancer tend to be older and may have other serious health conditions. Therefore, the percentage of people surviving the cancer itself is likely to be higher.

<table>
<thead>
<tr>
<th>Stage</th>
<th>5-Year Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>81%</td>
</tr>
<tr>
<td>II</td>
<td>74%</td>
</tr>
<tr>
<td>III</td>
<td>53%</td>
</tr>
<tr>
<td>IV</td>
<td>8%</td>
</tr>
</tbody>
</table>

Survival rates in the UCLA Integrated Staging System

Researchers at UCLA have published a study evaluating their system in patients treated there from 1989 to 2005, looking at survival rates of the low-, intermediate- and high-risk groups. All of these patients at least had surgery to remove the tumor in the kidney. These numbers are disease-specific survival rates, meaning they only take into account people who died from their kidney cancer (and not other causes).
For patients with localized kidney cancer (cancer that had not spread to the lymph nodes or distant organs), 5-year survival rates were 97% for the low-risk group, 81% for intermediate-risk group, and 62% for the high-risk group.

For patients with kidney cancer that had spread to the lymph nodes or distant organs when it was first found, 5-year survival rates were 41% for the low-risk group, 18% for intermediate-risk group, and 8% for the high-risk group.

How is kidney cancer treated?

Making treatment decisions

After the cancer is found and staged, your cancer care team will discuss your treatment options with you. It is important to take time and think about your possible choices. In choosing a treatment plan, one of the most important factors is the stage of the cancer. Other factors to consider include your overall health, the likely side effects of the treatment, and the probability of curing the disease, extending life, or relieving symptoms.

If you have kidney cancer, your treatment options may include:

- Surgery
- Ablation and other local therapies
- Active surveillance
- Radiation therapy
- Targeted therapy
- Immunotherapy (biologic therapy)
- Chemotherapy

Sometimes, more than one of type of treatment might be used. See “Treatment choices by stage for kidney cancer” to learn about common treatment plans.

You may have different types of doctors on your treatment team, depending on the stage of your cancer and your treatment options. These doctors could include:

- A urologist: a surgeon who specializes in treating diseases of the urinary system (and male reproductive system)
- A radiation oncologist: a doctor who treats cancer with radiation therapy
- A medical oncologist: a doctor who treats cancer with medicines such as chemotherapy
Many other specialists might be part of your treatment team as well, including physician assistants, nurse practitioners, nurses, physical therapists, social workers, and other health professionals. See *Health Professionals Associated With Cancer Care* for more on this.

It’s important to discuss all of your treatment options as well as their possible side effects with your doctors to help make the decision that best fits your needs. (See “What should you ask your doctor about kidney cancer?” for some questions to ask.)

When time permits, getting a second opinion is often a good idea. It can give you more information and help you feel good about the treatment plan you choose.

Thinking about taking part in a clinical trial

Clinical trials are carefully controlled research studies that are done to get a closer look at promising new treatments or procedures. Clinical trials are one way to get state-of-the-art cancer treatment. In some cases they may be the only way to get access to newer treatments. They are also the best way for doctors to learn better methods to treat cancer. Still, they are not right for everyone.

If you would like to learn more about clinical trials that might be right for you, start by asking your doctor if your clinic or hospital conducts clinical trials. You can also call our clinical trials matching service at 1-800-303-5691 for a list of studies that meet your medical needs, or see the Clinical Trials section to learn more.

Considering complementary and alternative methods

You may hear about alternative or complementary methods that your doctor hasn’t mentioned to treat your cancer or relieve symptoms. These methods can include vitamins, herbs, and special diets, or other methods such as acupuncture or massage, to name a few.

Complementary methods refer to treatments that are used along with your regular medical care. Alternative treatments are used instead of a doctor’s medical treatment. Although some of these methods might be helpful in relieving symptoms or helping you feel better, many have not been proven to work. Some might even be dangerous.

Be sure to talk to your cancer care team about any method you are thinking about using. They can help you learn what is known (or not known) about the method, which can help you make an informed decision. See the Complementary and Alternative Medicine section to learn more.

Help getting through cancer treatment

Your cancer care team will be your first source of information and support, but there are other resources for help when you need it. Hospital- or clinic-based support services are an important part of your care. These might include nursing or social work services, financial aid, nutritional advice, rehab, or spiritual help.
The American Cancer Society also has programs and services – including rides to treatment, lodging, support groups, and more – to help you get through treatment. Call our National Cancer Information Center at 1-800-227-2345 and speak with one of our trained specialists on call 24 hours a day, every day.

The treatment information given here is not official policy of the American Cancer Society and is not intended as medical advice to replace the expertise and judgment of your cancer care team. It is intended to help you and your family make informed decisions, together with your doctor. Your doctor may have reasons for suggesting a treatment plan different from these general treatment options. Don’t hesitate to ask him or her questions about your treatment options.

Surgery for kidney cancer

Surgery is the main treatment for most kidney cancers. The chances of surviving kidney cancer without having surgery are small.

Even patients whose cancer has spread to other organs may benefit from surgery to take out the kidney tumor. Removing the kidney containing the cancer can help some patients live longer, so a doctor may suggest surgery even if the patient’s cancer has spread beyond the kidney. Kidney removal can also be used to ease symptoms such as pain and bleeding.

Depending on the stage and location of the cancer and other factors, surgery may remove either the cancer along with some of the surrounding kidney tissue (known as a partial nephrectomy), or the entire kidney (known as a radical nephrectomy). The adrenal gland (the small gland that sits on top of each kidney) and fatty tissue around the kidney may be removed as well.

Radical nephrectomy

In this operation, the surgeon removes your whole kidney, the attached adrenal gland, and the fatty tissue around the kidney. Most people do just fine with only one remaining kidney.

The surgeon can make the incision in several places. The most common sites are the middle of the abdomen (belly), under the ribs on the same side as the cancer, or in the back, just behind the kidney. Each approach has its advantages in treating cancers of different sizes and in different parts of the kidney. Although removing the adrenal gland is a part of a standard radical nephrectomy, the surgeon may be able to leave it behind in some cases where the cancer is in the lower part of the kidney and is far away from the adrenal gland.

If the tumor has grown from the kidney through the renal vein (the vein leading away from the kidney) and into the inferior vena cava (the large vein that empties into the heart), the heart may need to be stopped for a short time in order to remove the tumor. The patient is put on cardiopulmonary bypass (a heart-lung machine) that circulates the blood while bypassing the heart. If you need this, a heart surgeon will work with your urologist during your operation.
Laparoscopic nephrectomy and robotic-assisted laparoscopic nephrectomy: These newer approaches to the operation are done through several small incisions instead of one large one. If a radical nephrectomy is needed, many doctors and patients now prefer these approaches when they can be used.

For a laparoscopic nephrectomy, special long instruments are inserted through the incisions, each of which is about 1/2-inch long, to remove the kidney. One of the instruments, the laparoscope, is a long tube with a small video camera on the end. This lets the surgeon see inside the abdomen. Usually, one of the incisions has to be made longer in order to remove the kidney (although it’s not as long as the incision for a standard nephrectomy).

A newer approach is to do the laparoscopic surgery remotely using a robotic interface (called the da Vinci system). The surgeon sits at a panel near the operating table and controls robotic arms to perform the operation. For the surgeon, the robotic system may provide more maneuverability and more precision when moving the instruments than standard laparoscopic surgery. But the most important factor in the success of either type of laparoscopic surgery is the surgeon’s experience and skill. This is a difficult approach to learn. If you are considering this type of operation, be sure to find a surgeon with a lot of experience.

The laparoscopic approach can be used to treat most renal tumors that cannot be treated with nephron-sparing surgery (see below). In experienced hands, the technique is as effective as a standard (open) radical nephrectomy and usually results in a shorter hospital stay, a faster recovery, and less pain after surgery. This approach may not be an option for large tumors (those larger than about 10 cm [4 inches] across) and tumors that have grown into the renal vein or spread to lymph nodes around the kidney.

Partial nephrectomy (nephron-sparing surgery)

In this procedure, the surgeon removes only the part of the kidney that contains cancer, leaving the rest of the organ behind. As with a radical nephrectomy, the surgeon can make the incision in several places, depending on factors like the location of the tumor.

Partial nephrectomy is now the preferred treatment for many people with early stage kidney cancer. It is often done to remove single small tumors (those less than 4 cm across), and can be done in patients with larger tumors (up to 7 cm across). Studies have shown the long-term results to be about the same as those when the whole kidney is removed. The obvious benefit is that the patient keeps more of their kidney function.

A partial nephrectomy may not be an option if the tumor is in the middle of the kidney or is very large, if there is more than one tumor in the same kidney, or if the cancer has spread to the lymph nodes or distant organs. Not all doctors can do this type of surgery. It should only be done by someone with a lot of experience.

Laparoscopic partial nephrectomy and robotic-assisted laparoscopic partial nephrectomy: Many doctors now do partial nephrectomies laparoscopically or using a
robot (as described above). But again, this is a difficult operation, and it should only be done by a surgeon with a great deal of experience.

Regional lymphadenectomy (lymph node dissection)

This procedure removes nearby lymph nodes to see if they contain cancer. Some doctors do this when doing a radical nephrectomy, although not all doctors agree that it is always needed.

Most doctors agree that the lymph nodes should be removed if they look enlarged on imaging tests or feel abnormal during the operation. Some doctors also remove these lymph nodes to check them for cancer spread even when they aren’t enlarged, in order to better stage the cancer. Before surgery, ask your doctor if he or she plans to remove the lymph nodes near the kidney.

Removal of an adrenal gland (adrenalectomy)

Although this is a standard part of a radical nephrectomy, if the cancer is in the lower part of the kidney (away from the adrenal gland) and imaging tests show the adrenal gland is not affected, it may not have to be removed. Just like with lymph node removal, this is decided on an individual basis and should be discussed with the doctor before surgery.

Removal of metastases

In about 1 in 4 people with kidney cancer, the cancer will already have spread (metastasized) to other parts of the body when it is diagnosed. The lungs, bones, brain and liver are the most common sites of spread. In some people, surgery may still be helpful.

Attempts at curative surgery: In rare cases where there is only a single metastasis or if there are only a few that can be removed easily without causing serious side effects, surgery may lead to long-term survival in some people.

The metastasis may be removed at the same time as a radical nephrectomy or at a later time if the cancer recurs (comes back).

Surgery to relieve symptoms (palliative surgery): When other treatments aren’t helpful, surgically removing the metastases can sometimes relieve pain and other symptoms, although this usually does not help people live longer.

Risks and side effects of surgery

The short-term risks of any type of surgery include reactions to anesthesia, excess bleeding (which might require blood transfusions), blood clots, and infections. Most people will have at least some pain after the operation, which can usually be helped with pain medicines, if needed.

Other possible risks of surgery include:
• Damage to internal organs and blood vessels (such as the spleen, pancreas, aorta, vena cava, large or small bowel) during surgery

• Pneumothorax (unwanted air in the chest cavity)

• Incisional hernia (bulging of internal organs near the surgical incision due to problems with wound healing)

• Leakage of urine into the abdomen (after partial nephrectomy)

• Kidney failure (if the remaining kidney fails to function well)

For more general information about surgery as a treatment for cancer, see Understanding Cancer Surgery: A Guide for Patients and Families.

Ablation and other local therapy for kidney cancer

Whenever possible, surgery is the main treatment for kidney cancers that can be removed. But for people who are too sick to have surgery, other approaches can sometimes be used to destroy kidney tumors. They might be helpful for some people, but there is much less data on how well they work over the long run than there is for surgery, so they are not yet considered a standard treatment.

Cryotherapy (cryoablation)

This approach uses extreme cold to destroy the tumor. A hollow probe (needle) is inserted into the tumor either through the skin (percutaneously) or during laparoscopy (see “Surgery for kidney cancer”). Very cold gases are passed through the probe, creating an ice ball at its tip that destroys the tumor. To be sure the tumor is destroyed without too much damage to nearby tissues, the doctor carefully watches images of the tumor during the procedure (with ultrasound) or measures tissue temperature.

The type of anesthesia used for cryotherapy depends on how the procedure is being done. Possible side effects include bleeding and damage to the kidneys or other nearby organs.

Radiofrequency ablation (RFA)

This technique uses high-energy radio waves to heat the tumor. A thin, needle-like probe is placed through the skin and advanced until the end is in the tumor. Placement of the probe is guided by ultrasound or CT scans. Once it is in place, an electric current is passed through the tip of the probe, which heats the tumor and destroys the cancer cells.

RFA is usually done as an outpatient procedure, using local anesthesia (numbing medicine) where the probe is inserted. You may be given medicine to help you relax as well.

Major complications are uncommon, but they can include bleeding and damage to the kidneys or other nearby organs.
Arterial embolization

This technique is used to block the artery that feeds the kidney that has the tumor. A small catheter (tube) is placed in an artery in the inner thigh and is moved up until it reaches the artery going from the aorta to the kidney (renal artery). Material is then injected into the artery to block it, cutting off the kidney’s blood supply. This will cause the kidney (and the tumor in it) to die.

Although this procedure is not used very often, it is sometimes done before a radical nephrectomy to reduce bleeding during the operation or in patients who have persistent bleeding from the kidney tumor.

Active surveillance for kidney cancer

One option for some patients with small kidney tumors (those less than 4 cm, which is about 1½ inches), may be to give no treatment at first and watch the tumor carefully to see if it grows. The tumor is removed (or treated another way) if it grows quickly or gets larger than 4 cm.

This approach is most often used in elderly or frail patients as it avoids the risks of treatment. Often, a biopsy is done before deciding to watch the tumor to see if the growth is really cancer. Some of these small tumors turn out to not be cancers at all. Watching them closely for a time helps doctors decide which tumors are more likely to be cancer based on their growth pattern.

Radiation therapy for kidney cancer

Radiation therapy uses high-energy radiation to kill cancer cells. The type of radiation sometimes used to treat kidney cancer, known as external beam therapy, focuses radiation from a source outside the body on the cancer.

Kidney cancers are not very sensitive to radiation. Radiation therapy can sometimes be used to treat kidney cancer if a person is not healthy enough to have surgery, although other treatments might be tried first instead.

Radiation therapy is more often used to palliate, or ease, symptoms of kidney cancer such as pain, bleeding, or problems caused by cancer spread (especially to the bones or brain).

The treatment is much like getting an x-ray, but the radiation is much stronger. The procedure itself is painless. Before your treatments start, the medical team will take careful measurements to determine the correct angles for aiming the radiation beams and the proper dose of radiation. Each treatment lasts only a few minutes, but the setup time – getting you into place for treatment – usually takes longer.

A special type of radiation therapy known as stereotactic radiosurgery can sometimes be used for single tumors in the brain. This does not actually involve surgery. There are 2 main techniques for stereotactic radiosurgery, but they both use the same principle of pinpoint radiation. In one technique, many thin beams of radiation are focused on the
tumor from different angles over a few minutes to hours. The second technique uses a movable linear accelerator (a machine that produces x-ray beams) that is controlled by a computer. Instead of delivering many beams at once, the linear accelerator moves around to deliver radiation to the tumor from different angles. In either approach, the patient’s head is kept in the same position by placing it in a rigid frame. This type of treatment can also be used for areas of cancer spread outside of the brain. When it is used to treat cancer elsewhere, it is called *stereotactic body radiotherapy*.

Possible side effects

Side effects of radiation therapy depend on where it is aimed and can include skin changes (similar to sunburn) and hair loss where the radiation passes through the skin, nausea, diarrhea, or tiredness. Often these go away after a short while. Radiation may also make side effects from some other treatments worse.

Radiation therapy to the chest area can damage the lungs and might lead to shortness of breath.

Side effects of radiation to the brain usually become most serious 1 or 2 years after treatment and can include headaches and trouble thinking.

For more general information about radiation therapy, see the Radiation Therapy section of our website or *Understanding Radiation Therapy: A Guide for Patients and Families*.

Targeted therapies for kidney cancer

As researchers have learned more about the molecular and genetic changes in cells that cause cancer, they have developed newer drugs that target some of these changes. These targeted drugs are different from standard chemotherapy drugs. They sometimes work when standard chemo drugs don’t, and they often have different (and less severe) side effects. Targeted drugs are proving to be especially important in kidney cancer, where chemotherapy has not been shown to be very effective.

These drugs are often used as the first line of treatment against advanced kidney cancers. They can often shrink or slow the growth of the cancer for a time, but it doesn’t seem that any of these drugs can actually cure kidney cancer.

Several targeted drugs can be used to treat advanced kidney cancer. These drugs block angiogenesis (growth of the new blood vessels that nourish cancers) or important proteins in cancer cells (called *tyrosine kinases*) that help them grow and survive. Some targeted drugs affect both of these.

Doctors are still learning the best ways to use targeted drugs against advanced kidney cancers. As of now, they are most often used one at a time. If one doesn’t work, another can be tried. It’s not yet known if any one of these drugs is clearly better than the others, if combining them might be more helpful than giving them one at a time, or if one sequence is better than the other. Studies are being done to help answer these questions.
Sorafenib (Nexavar)

Sorafenib acts by blocking both angiogenesis and growth-stimulating molecules in the cancer cell itself. Sorafenib does this by blocking several tyrosine kinases that are important for cell growth and survival. It is taken as a pill twice a day.

The most common side effects seen with this drug include fatigue, rash, diarrhea, increases in blood pressure, and redness, pain, swelling, or blisters on the palms of the hands or soles of the feet (hand-foot syndrome).

Sunitinib (Sutent)

Sunitinib also blocks several tyrosine kinases, but not the same ones as sorafenib. It attacks both blood vessel growth and other targets that help cancer cells grow. This drug is taken as a pill.

The most common side effects are nausea, diarrhea, changes in skin or hair color, mouth sores, weakness, and low white and red blood cell counts. Other possible effects include tiredness, high blood pressure, congestive heart failure, bleeding, hand-foot syndrome, and low thyroid hormone levels.

Temsirolimus (Torisel)

Temsirolimus works by blocking a cell protein known as mTOR, which normally helps cells grow and divide. This drug has been shown to be helpful against advanced kidney cancers that have a poorer prognosis because of certain factors. It is given as an intravenous (IV) infusion, typically once a week.

The most common side effects of this drug include skin rash, weakness, mouth sores, nausea, loss of appetite, fluid buildup in the face or legs, and increases in blood sugar and cholesterol levels. Rarely, more serious side effects have been reported.

Everolimus (Afinitor)

Everolimus also blocks the mTOR protein. It is used to treat advanced kidney cancers after other drugs such as sorafenib or sunitinib have been tried. Everolimus is taken as a pill once a day.

Common side effects of this drug include mouth sores, an increased risk of infections, nausea, loss of appetite, diarrhea, skin rash, feeling tired or weak, fluid buildup (usually in the legs), and increases in blood sugar and cholesterol levels. A less common but serious side effect is lung damage, which can cause shortness of breath or other problems.

Bevacizumab (Avastin)

Bevacizumab is an IV drug that works by slowing the growth of new blood vessels. It may help some people with kidney cancer when used with interferon-alfa.
More common side effects include high blood pressure, tiredness, and headaches. Less common but possibly serious side effects include bleeding, blood clots, holes forming in the intestines, heart problems, and slow wound healing.

Pazopanib (Votrient)

Pazopanib is another drug that blocks several tyrosine kinases involved in cancer cell growth and the formation of new blood vessels in the tumor. It is taken as a pill once a day.

Common side effects include high blood pressure, nausea, diarrhea, headaches, low blood cell counts, and liver problems. It can cause lab test results of liver function to become abnormal, but it rarely leads to severe liver damage that can be life threatening. Problems with bleeding, clotting, and wound healing can occur, as well. It also rarely causes a problem with the heart rhythm or even a heart attack. If you are taking this drug, your doctor will monitor your heart with EKGs as well as check your blood tests to check for liver or other problems.

Axitinib (Inlyta)

Axitinib also inhibits several tyrosine kinases, including some that are involved in the formation of new blood vessels. It is typically used after at least one other treatment has been tried. Axitinib is taken as a pill twice a day.

Common side effects include high blood pressure, fatigue, nausea and vomiting, diarrhea, poor appetite and weight loss, voice changes, hand-foot syndrome, and constipation. High blood pressure requiring treatment is fairly common, but in a small number of patients it can get high enough to be life-threatening. It can also cause problems with bleeding, clotting, and wound healing. In some patients, lab test results of liver function can become abnormal. Axitinib may also cause the thyroid gland to become underactive, so your doctor will watch your blood levels of thyroid hormone while you are on this drug.

Cabozantinib (Cabometyx)

Cabozantinib is another drug that blocks several tyrosine kinases, including some that help form new blood vessels. It is typically used after at least one other treatment has been tried. Cabozantinib is taken as a pill once a day.

Common side effects include diarrhea, fatigue, nausea and vomiting, poor appetite and weight loss, high blood pressure, hand-foot syndrome, and constipation. Less common but more serious side effects can include serious bleeding, blood clots, very high blood pressure, severe diarrhea, and holes forming in the intestines.
Lenvatinib (Lenvima)

Lenvatinib (Lenvima) is another kinase inhibitor that helps block tumors from forming new blood vessels, as well as targeting some of the proteins in cancer cells that normally help them grow. It is typically used along with everolimus after at least one other treatment has been tried. Lenvatinib is taken as capsules once a day.

Common side effects include diarrhea, fatigue, joint or muscle pain, loss of appetite, nausea and vomiting, mouth sores, weight loss, high blood pressure, and swelling in the arms or legs. Less common but more serious side effects can include serious bleeding, blood clots, very high blood pressure, severe diarrhea, holes forming in the intestines, and kidney, liver, or heart failure.

Biologic therapy (immunotherapy) for kidney cancer

The goal of biologic therapy is to boost the body’s immune system to help fight off or destroy cancer cells.

Cytokines

Cytokines are man-made versions of natural proteins that activate the immune system. The cytokines used most often to treat kidney cancer are interleukin-2 (IL-2) and interferon-alpha. Both cytokines can cause kidney cancers to shrink in a small percentage of patients.

Interleukin-2 (IL-2)

In the past, IL-2 was commonly used as first-line therapy for advanced kidney cancer, and it may still be helpful for some people. But because it can be hard to give and can cause serious side effects, many doctors only use it in patients who are healthy enough to withstand the side effects, or for cancers that aren’t responding to targeted drugs.

Although only a small percentage of patients respond to IL-2, it is the only therapy that appears to result in long-lasting responses. Doctors are now looking to see if certain patient and cancer characteristics can help predict if IL-2 will be helpful.

Giving high doses of IL-2 seems to offer the best chance of shrinking the cancer, but this can cause serious side effects, so it is not used in people who are in poor overall health to begin with. Special care is needed to recognize and treat these side effects. Because of this, high-dose IL-2 is only given in the hospital at certain centers that are experienced with giving this type of treatment.

The possible side effects of high-dose IL-2 include:

- Extreme fatigue
- Low blood pressure
- Fluid buildup in the lungs
- Trouble breathing
- Kidney damage
- Heart attacks
- Intestinal bleeding
- Diarrhea or abdominal pain
- High fever and chills
- Rapid heart beat
- Mental changes

These side effects are often severe and, rarely, can be fatal. Only doctors experienced in the use of these cytokines should give this treatment.

Interferon-alfa

Interferon has less serious side effects than IL-2, but it does not seem to be as effective when used by itself. It is more often used in combination with the targeted drug bevacizumab (Avastin).

Common side effects of interferon include flu-like symptoms (fever, chills, muscle aches), fatigue, and nausea.

Immune checkpoint inhibitors

An important part of the immune system is its ability to keep itself from attacking normal cells in the body. To do this, it uses “checkpoints,” which are molecules on immune cells that need to be turned on (or off) to start an immune response. Cancer cells sometimes use these checkpoints to avoid being attacked by the immune system. But newer drugs that target these checkpoints hold a lot of promise as cancer treatments.

Nivolumab (Opdivo) is a drug that targets PD-1, a protein on immune system cells called *T cells* that normally helps keep these cells from attacking other cells in the body. By blocking PD-1, this drug boosts the immune response against cancer cells. This can shrink some tumors or slow their growth.

This drug can be used in people whose kidney cancer starts growing again after other drug treatments.

This drug is given as an intravenous (IV) infusion, typically every 2 weeks.

Possible side effects

Side effects of immune checkpoint inhibitors can include fatigue, cough, nausea, itching, skin rash, loss of appetite, constipation, joint pain, and diarrhea.
Other, more serious side effects occur less often. These drugs work by basically removing the brakes on the body’s immune system. Sometimes the immune system starts attacking other parts of the body, which can cause serious or even life-threatening problems in the lungs, intestines, liver, hormone-making glands, kidneys, or other organs.

It’s very important to report any new side effects to your health care team promptly. If serious side effects do occur, treatment may need to be stopped and you may get high doses of corticosteroids to suppress your immune system.

Newer approaches to immunotherapy

Cytokines can also be used as part of some experimental immunotherapy techniques. In one approach, immune system cells are removed from the blood and treated with cytokines in the lab to help activate them. These cells are then injected back into the patient in the hope that this will stimulate the immune system to fight the cancer.

In recent years, newer types of drugs that help boost the body’s immune response against cancer cells have shown early promise in kidney cancer. These and other newer forms of immunotherapy are described in “What’s new in kidney cancer research and treatment?”

Chemotherapy for kidney cancer

Chemotherapy (chemo) uses anti-cancer drugs that are given into a vein or by mouth (in pill form). These drugs enter your blood and reach all areas of the body, which makes this treatment potentially useful for cancer that has spread (metastasized) to organs beyond the kidney.

Unfortunately, kidney cancer cells are usually resistant to chemo, so chemo is not a standard treatment for kidney cancer. Some chemo drugs, such as vinblastine, floxuridine, 5-fluorouracil (5-FU), capecitabine, and gemcitabine have been shown to help a small number of patients. Still, chemo is often only used for kidney cancer after targeted drugs and/or immunotherapy have already been tried.

Doctors give chemotherapy in cycles, with each period of treatment followed by a rest period to allow the body time to recover. Chemo cycles generally last a few weeks.

Possible side effects of chemotherapy

Chemo drugs attack cells that are dividing quickly, which is why they often work against cancer cells. But other cells in the body, such as those in the bone marrow (where new blood cells are made), the lining of the mouth and intestines, and the hair follicles, also divide quickly. These cells are also likely to be affected by chemo, which can lead to certain side effects.

The side effects of chemo depend on the type of drugs, the amount taken, and the length of treatment. Possible side effects can include:

- Hair loss
- Mouth sores
- Loss of appetite
- Nausea and vomiting
- Diarrhea or constipation
- Increased chance of infections (due to low white blood cell counts)
- Easy bruising or bleeding (due to low blood platelet counts)
- Fatigue (due to low red blood cell counts)

These side effects usually go away after treatment is finished. There are often ways to prevent or lessen them. For example, drugs can be given to help prevent or reduce nausea and vomiting. Specific chemo drugs may each cause specific side effects. Ask your health care team about the side effects your chemo drugs may cause.

For more general information about chemotherapy, see the Chemotherapy section of our website or A Guide to Chemotherapy.

Pain control for kidney cancer

Pain is a concern for some patients with advanced kidney cancer. It is important to let your doctor know about any pain you might have so that it can be treated. Unless your doctor knows about your pain, they can’t help you.

There are many different forms of pain medicine, ranging from over-the-counter pain relievers to stronger drugs like morphine or other opioids. For treatment to be effective, the pain medicines need to be taken on a regular schedule, not just when the pain becomes severe. Several long-acting forms of morphine and other long-acting opioid drugs need only to be taken once or twice a day.

In some cases, palliative surgery or radiation therapy can help relieve pain caused by cancer spreading to certain areas. For example, drugs called *bisphosphonates* may be helpful in people whose cancers have spread to their bones. Sometimes pain specialists can do certain procedures such as a nerve block to lessen pain, depending on where the pain is.

To learn more about the options for managing cancer pain, see the Cancer Pain section of our website.

Treatment choices by stage for kidney cancer

The type of treatment(s) your doctor recommends will depend on the stage of the cancer and on your overall health. This section sums up the options usually considered for each stage of kidney cancer.
Stages I, II, or III

Stage I and II cancers are still contained within the kidney. Stage III cancers have either grown into nearby large veins or have spread to nearby lymph nodes.

These cancers are usually removed with surgery when possible. Either a partial nephrectomy (removing part of the kidney) or a radical nephrectomy (removing the entire kidney) may be done. Partial nephrectomy is often the treatment of choice in tumors up to 7 cm (a little less than 3 inches in size) if it can be done. The lymph nodes near the kidney may be removed as well, especially if they are enlarged.

If the cancer has grown into nearby veins (as with some stage III cancers), the surgeon may need to cut open these veins to remove all of the cancer. This may require putting you on bypass (a heart-lung machine), so that the heart can be stopped for a short time to remove the cancer from the large vein leading to the heart.

So far, giving other treatments after surgery (known as adjuvant therapy) such as targeted therapy, chemotherapy, radiation therapy, or immunotherapy has not been shown to help patients live longer if all of the cancer has been removed. There are, however, ongoing clinical trials that are looking at adjuvant treatment for kidney cancer. Ask your doctor if you are interested in learning more about adjuvant therapies being studied in clinical trials.

If you cannot have kidney surgery because of other serious medical problems, you may benefit from other local treatments such as cryotherapy, radiofrequency ablation, or arterial embolization. Radiation therapy may be another option. These treatments are generally only given when surgery can’t be done. Although they haven’t been compared to surgery directly in studies, most doctors consider these treatments to be less effective than surgery.

Active surveillance is another option for some people with small kidney tumors. In this approach, the tumor is watched closely (with CTs or ultrasounds) and only treated if it grows.

Stage IV

Stage IV kidney cancer means that the cancer has grown outside of the kidney or it has spread to other parts of the body such as distant lymph nodes or other organs.

Treatment of stage IV kidney cancer depends on how extensive the cancer is and on the person’s general health. In some cases, surgery may still be a part of treatment.

In rare cases where the main tumor appears to be removable and the cancer has only spread to one other area (such as to one or a few spots in the lungs), surgery to remove both the kidney and the metastasis may be an option if a person is in good enough health. Otherwise, treatment with one of the targeted therapies would probably be the first option.
If the main tumor is removable but the cancer has spread extensively elsewhere, removing the kidney may still be helpful. This would likely be followed by systemic therapy, which might consist of one of the targeted therapies or immunotherapy (interleukin-2). More often targeted therapy is used first. It’s not clear if any one of the targeted therapies or any particular sequence is better than another, although temsirolimus appears to be most useful in people with kidney cancers that have a poorer prognosis (outlook).

For cancers that can’t be removed surgically (because of the extent of the tumor or a person’s health), first-line treatment is likely to be one of the targeted therapies or cytokine therapy.

Because advanced kidney cancer is very hard to cure, clinical trials of new combinations of targeted therapies, immunotherapy, or other new treatments are also options.

For some patients, palliative treatments such as embolization or radiation therapy may be the best option. A special form of radiation therapy called stereotactic radiosurgery can be very effective in treating single brain metastases. Surgery or radiation therapy can also be used to help reduce pain or other symptoms of metastases in some other places, such as the bones. You can read more about palliative treatment for cancer in the Palliative Care section of our website or in Advanced Cancer.

Having your pain controlled can help you maintain your quality of life. It’s important to realize that medicines to relieve pain do not interfere with your other treatments and that controlling pain will often help you be more active and continue your daily activities.

Recurrent cancer

Cancer is called *recurrent* when it come backs after treatment. Recurrence can be local (in or near the same place it started) or distant (spread to organs such as the lungs or bone). Treatment of kidney cancer that comes back (recurs) after initial treatment depends on where it recurs and what treatments have been used, as well as a person’s health and wishes for further treatment.

For cancers that recur after initial surgery, further surgery might be an option. Otherwise, treatment with targeted therapies or immunotherapy will probably be recommended. Clinical trials of new treatments are an option as well.

For cancers that progress (continue to grow or spread) during treatment with targeted therapy or cytokine therapy, another type of targeted therapy or immunotherapy may be helpful. If these don’t work, chemotherapy may be tried, especially in people with non-clear cell types of renal cell cancer. Clinical trials may be a good option in this situation for those who want to continue treatment.

Again, for some patients, palliative treatments such as embolization or radiation therapy may be the best option. Controlling symptoms such as pain is an important part of treatment at any stage of the disease.

For more see *When Your Cancer Comes Back: Cancer Recurrence.*
What should you ask your doctor about kidney cancer?

It’s important to have frank, open discussions with your cancer care team. Feel free to ask any question, no matter how small it might seem. For instance, consider asking these questions:

- What kind of kidney cancer do I have?
- What is the stage of my cancer and what does that mean?
- Do I need other tests before we can decide on treatment?
- Do I need to see other doctors?
- How much experience do you have treating this type of cancer?
- What treatment choices do I have? What do you recommend? Why?
- Should I get a second opinion? Can you recommend a doctor or cancer center?
- How soon do I need to start treatment?
- What should I do to be ready for treatment?
- How long will treatment last? What will it be like? Where will it be done?
- What risks or side effects are there to the treatments you suggest?
- How long will it take me to recover from treatment?
- What are the chances of my cancer coming back after treatment? What will we do if that happens?
- What type of follow-up will I need after treatment?
- Are there any clinical trials I should think about?

Along with these sample questions, be sure to write down some of your own. Keep in mind, too, that doctors are not the only ones who can give you information. Other health care professionals, such as nurses and social workers, may have the answers to your questions. You can find more information about communicating with your health care team in *Talking With Your Doctor*.

What happens after treatment for kidney cancer?

For some people with kidney cancer, treatment can remove or destroy the cancer. Completing treatment can be both stressful and exciting. You may be relieved to finish
treatment, but find it hard not to worry about cancer coming back. (When cancer comes back after treatment, it is called recurrence.) This is a very common concern in people who have had cancer.

It may take a while before your fears lessen. But it may help to know that many cancer survivors have learned to live with this uncertainty and are leading full lives. See Living With Uncertainty: The Fear of Cancer Recurrence for more detailed information on this.

For other people, the cancer may never go away completely. Some people may get regular treatments with targeted therapy or other therapies to try to help keep the cancer in check. Learning to live with cancer that does not go away can be difficult and very stressful. It has its own type of uncertainty. See When Cancer Doesn’t Go Away for more about this.

Follow-up care

If you have completed treatment, your doctors will still want to watch you closely. It’s very important to go to all of your follow-up appointments. During these visits, your doctors will ask questions about any symptoms and may do exams and lab tests or imaging tests (such as CT scans) to look for signs of cancer or treatment side effects.

Almost any cancer treatment can have side effects. Some can last for a few weeks to months, but others can last the rest of your life. This is the time for you to talk to your cancer care team about any changes or problems you notice and any questions or concerns you have.

For people whose kidney cancer has been removed by surgery, doctor visits (including physical exams and blood tests) are usually recommended about every 6 months for the first 2 years after treatment, then yearly for the next several years. A CT scan is usually recommended about 3 to 6 months after surgery and may be repeated later if there’s reason to suspect the cancer might have returned. (Treatment of recurrent cancer is discussed in “Treatment choices by stage for kidney cancer.”) Patients who have a higher risk of cancer coming back after surgery, such as cancer that had spread to lymph nodes, may be seen more often and have more frequent CT scans for the first few years.

Each type of treatment for kidney cancer has side effects that can last for a few months. You may be able to help your recovery by being aware of the side effects before you start treatment. You might be able to take steps to reduce them and shorten the length of time they last. Don’t hesitate to tell your cancer care team about any symptoms or side effects that bother you so they can help you manage them.

It’s also very important to keep your health insurance. Tests and doctor visits cost a lot, and even though no one wants to think of their cancer coming back, this could happen.

Should your cancer come back, see When Your Cancer Comes Back: Cancer Recurrence for information on how to manage and cope with this phase of your treatment.
Seeing a new doctor

At some point after your cancer diagnosis and treatment, you may find yourself seeing a new doctor who does not know anything about your medical history. It’s important to be able to give your new doctor the details of your diagnosis and treatment. Gathering these details soon after treatment may be easier than trying to get them at some point in the future. Make sure you have this information handy and always keep copies for yourself:

- A copy of your pathology report(s) from any biopsies or surgeries
- If you had surgery, a copy of your operative report
- If you had radiation, a copy of your treatment summary
- If you stayed in the hospital, a copy of the discharge summary that your doctor prepared when you were sent home
- If you had targeted therapy, immunotherapy, or chemotherapy, a list of the drugs, drug doses, and when you took them
- Copies of your CTs, MRIs, or other imaging tests (these can often be stored digitally on a DVD, etc.)

Can I get another cancer after having kidney cancer?

Cancer survivors can be affected by a number of health problems, but often their greatest concern is facing cancer again. If a cancer comes back after treatment it is called a “recurrence.” But some cancer survivors may develop a new, unrelated cancer later. This is called a “second cancer.” No matter what type of cancer you have had, it is still possible to get another (new) cancer, even after surviving the first.

Unfortunately, being treated for cancer doesn’t mean you can’t get another cancer. People who have had cancer can still get the same types of cancers that other people get. In fact, certain types of cancer and cancer treatments can be linked to a higher risk of certain second cancers.

Survivors of kidney cancer can get any type of second cancer, but they have an increased risk of:

- A second kidney cancer (this is different than the first cancer coming back)
- Bladder cancer
- Cancer of the ureter (the tube that connects the kidney to the bladder)
- Prostate cancer
- Thyroid cancer
- Melanoma of the skin
The risk of a second kidney cancer is highest in patients who were diagnosed before age 50.

Follow-up after treatment

After completing treatment for kidney cancer, you should still see your doctor regularly to look for signs that the cancer has come back or spread. Experts do not recommend any additional testing to look for second cancers in patients without symptoms. Let your doctor know about any new symptoms or problems, because they could be caused by the cancer coming back or by a new disease or second cancer.

Survivors of kidney cancer should follow the [American Cancer Society guidelines for the early detection of cancer](https://www.cancer.org) and stay away from tobacco products. Smoking increases the risk of many cancers.

To help maintain good health, survivors should also:

- Achieve and maintain a healthy weight
- Adopt a physically active lifestyle
- Consume a healthy diet, with an emphasis on plant foods
- Limit consumption of alcohol to no more than 1 drink per day for women or 2 per day for men

These steps may also lower the risk of some cancers.

See *Second Cancers in Adults* for more information about causes of second cancers.

Lifestyle changes after treatment for kidney cancer

You can’t change the fact that you have had cancer. What you can change is how you live the rest of your life – making choices to help you stay healthy and feel as well as you can. This can be a time to look at your life in new ways. Maybe you are thinking about how to improve your health over the long term. Some people even start during cancer treatment.

Making healthier choices

For many people, a diagnosis of cancer helps them focus on their health in ways they may not have thought much about in the past. Are there things you could do that might make you healthier? Maybe you could try to eat better or get more exercise. Maybe you could cut down on alcohol, or give up tobacco. Even things like keeping your stress level under control may help. Now is a good time to think about making changes that can have positive effects for the rest of your life. You will feel better and you will also be healthier.

You can start by working on those things that worry you most. Get help with those that are harder for you. For instance, if are thinking about quitting smoking and need help,
call the American Cancer Society at 1-800-227-2345. A tobacco cessation and coaching service can help increase your chances of quitting for good.

Eating better

Eating right can be hard for anyone, but it can get even tougher during and after cancer treatment. Treatment may change your sense of taste. Nausea can be a problem. You may not feel like eating and lose weight when you don’t want to. Or you may have gained weight that you can’t seem to lose. All of these things can be very frustrating.

If treatment caused weight changes or eating or taste problems, do the best you can and keep in mind that these problems usually get better over time. You may find it helps to eat small portions every 2 to 3 hours until you feel better. You may also want to ask your cancer team about seeing a dietitian, an expert in nutrition who can give you ideas on how to deal with these treatment side effects.

One of the best things you can do after cancer treatment is put healthy eating habits into place. You may be surprised at the long-term benefits of some simple changes, like increasing the variety of healthy foods you eat. Getting to and staying at a healthy weight, eating a healthy diet, and limiting your alcohol intake may lower your risk for a number of types of cancer, as well as having many other health benefits.

You can get more information in *Nutrition and Physical Activity During and After Cancer Treatment: Answers to Common Questions.*

Rest, fatigue, and exercise

Extreme tiredness, called *fatigue*, is very common in people treated for cancer. This is not a normal tiredness, but a bone-weary exhaustion that often doesn’t get better with rest. For some people, fatigue lasts a long time after treatment, and can make it hard for them to be active and do other things they want to do. But exercise can help reduce fatigue. Studies have shown that patients who follow an exercise program tailored to their personal needs feel better physically and emotionally and can cope better, too.

If you were sick and not very active during treatment, it is normal for your fitness, endurance, and muscle strength to decline. Any plan for physical activity should fit your own situation. A person who has never exercised will not be able to take on the same amount of exercise as someone who plays tennis twice a week. If you haven’t been active in a few years, you will have to start slowly – maybe just by taking short walks.

Talk with your health care team before starting anything. Get their opinion about your exercise plans. Then, try to find an exercise buddy so you’re not doing it alone. Having family or friends involved when starting a new activity program can give you that extra boost of support to keep you going when the push just isn’t there.

If you are very tired, you will need to balance activity with rest. It is OK to rest when you need to. Sometimes it’s really hard for people to allow themselves to rest when they are used to working all day or taking care of a household, but this is not the time to push
yourself too hard. Listen to your body and rest when you need to. For more information on dealing with fatigue and other treatment side effects, see the Physical Side Effects section of our website.

Keep in mind exercise can improve your physical and emotional health.

- It improves your cardiovascular (heart and circulation) fitness.
- Along with a good diet, it will help you get to and stay at a healthy weight.
- It makes your muscles stronger.
- It reduces fatigue and helps you have more energy.
- It can help lower anxiety and depression.
- It can make you feel happier.
- It helps you feel better about yourself.

And long term, we know that getting regular physical activity plays a role in helping to lower the risk of some cancers, as well as having other health benefits.

Can I lower my risk of kidney cancer coming back?

Most people want to know if there are specific lifestyle changes they can make to reduce their risk of cancer coming back. Unfortunately, for most cancers there is little solid evidence to guide people. This doesn’t mean that nothing will help – it’s just that for the most part this is an area that hasn’t been well studied. Most studies have looked at lifestyle changes as ways of preventing cancer in the first place, not slowing it down or keeping it from coming back.

At this time, not enough is known about kidney cancer to say for sure if there are things you can do that will be helpful. Adopting healthy behaviors such as not smoking, eating well, being active, and staying at a healthy weight may help, but no one knows for sure. Still, we do know that these types of changes can have positive effects on your health that can extend beyond your risk of kidney cancer or other cancers.

How might having kidney cancer affect your emotional health?

During and after treatment, you may find yourself overcome with many different emotions. This happens to a lot of people.

You may find yourself thinking about death and dying. Or maybe you’re more aware of the effect the cancer has on your family, friends, and career. You may take a new look at your relationships with those around you. Unexpected issues may also cause concern. For instance, you might be stressed by financial concerns resulting from your treatment. You
might also see your health care team less often after treatment and have more time on your hands. These changes can make some people anxious.

Almost everyone who is going through or has been through cancer can benefit from getting some type of support. You need people you can turn to for strength and comfort. Support can come in many forms: family, friends, cancer support groups, church or spiritual groups, online support communities, or one-on-one counselors. What’s best for you depends on your situation and personality. Some people feel safe in peer-support groups or education groups. Others would rather talk in an informal setting, such as church. Others may feel more at ease talking one-on-one with a trusted friend or counselor. Whatever your source of strength or comfort, make sure you have a place to go with your concerns.

The cancer journey can feel very lonely. It’s not necessary or good for you to try to deal with everything on your own. And your friends and family may feel shut out if you don’t include them. Let them in, and let in anyone else who you feel may help. If you aren’t sure who can help, call your American Cancer Society at 1-800-227-2345 and we can put you in touch with a group or resource that may work for you. See Distress in People with Cancer or see the Emotional Side Effects section of our website for more information.

If treatment for kidney cancer stops working

If cancer keeps growing or comes back after one kind of treatment, it’s possible that another treatment plan might still cure the cancer, or at least shrink it enough to help you live longer and feel better. But when a person has tried many different treatments and the cancer has not gotten any better, even newer treatments might no longer be effective. If this happens, it’s important to weigh the possible limited benefits of trying a new treatment against the possible downsides, including treatment side effects. Everyone has their own way of looking at this.

This is likely to be the hardest part of your battle with cancer – when you have been through many medical treatments and nothing’s working anymore. Your doctor might offer you new options, but at some point you may need to consider that treatment is not likely to improve your health or change your outcome or survival.

If you want to continue to get treatment for as long as you can, you need to think about the odds of treatment having any benefit and how this compares to the possible risks and side effects. Your doctor can estimate how likely it is the cancer will respond to treatment you are considering. For instance, the doctor may say that more treatment might have about a 1 in 100 chance of working. Some people are still tempted to try this. But it’s important to have realistic expectations if you do choose this plan. See Advanced Cancer for more on this situation.

Palliative care

No matter what you decide to do, you need to feel as good as you can. Make sure you are asking for and getting treatment for any symptoms you might have, such as nausea or pain. This type of treatment is called palliative care.
Palliative care helps relieve symptoms, but is not expected to cure the disease. It can be given along with cancer treatment, or can even be cancer treatment. The difference is its purpose – the main goal of palliative care is to improve the quality of your life, or help you feel as good as you can for as long as you can. Sometimes this means using drugs to help with symptoms like pain or nausea. Sometimes, though, the treatments used to control your symptoms are the same as those used to treat cancer. For instance, radiation might be used to help relieve bone pain caused by cancer that has spread to the bones. But this is not the same as treatment to try to cure the cancer.

Hospice care

At some point, you may benefit from hospice care. This is special care that treats the person rather than the disease; it focuses on quality rather than length of life. Most of the time, it’s given at home. Your cancer may be causing problems that need to be managed, and hospice focuses on your comfort. You should know that while getting hospice care often means the end of treatments such as targeted therapy and radiation, it doesn’t mean you can’t have treatment for the problems caused by your cancer or other health conditions. In hospice the focus of your care is on living life as fully as possible and feeling as well as you can at this difficult time. You can learn more about hospice and things that are important near the end of life in *Hospice Care*.

Staying hopeful is important, too. Your hope for a cure may not be as bright, but there’s still hope for good times with family and friends – times that are filled with happiness and meaning. Pausing at this time in your cancer treatment gives you a chance to refocus on the most important things in your life. Now is the time to do some things you’ve always wanted to do and to stop doing the things you no longer want to do. Though the cancer may be beyond your control, there are still choices you can make.

To learn more

You can learn more about the changes that occur when curative treatment stops working, and about planning ahead for yourself and your family, in *Nearing the End of Life* and *Advance Directives*.

What’s new in kidney cancer research and treatment?

Research on the treatments for renal cell carcinoma is now being done at many medical centers, university hospitals, and other institutions across the nation. The American Cancer Society supports research into the causes, detection, diagnosis, and treatment of kidney cancer.
Genetics

Scientists are studying several genes that seem to play a part in changing normal kidney cells into renal cell carcinoma (RCC).

For example, problems with the VHL tumor suppressor gene are found in most clear cell RCCs. This allows other genes such as the hypoxia-inducible factor (HIF) gene to be activated when they shouldn’t be, which drives a cell toward being cancerous. Some newer treatments focus on attacking this cellular pathway.

Researchers now also have a better idea of the gene changes responsible for some other forms of RCC. Doctors are trying to determine which treatments are most likely to be effective for certain types of RCC. This information can also be used to develop new treatments.

New approaches to local treatment

High-intensity focused ultrasound (HIFU) is a fairly new technique that is now being studied for use in kidney cancer. It involves pointing very focused ultrasound beams from outside the body to destroy the tumor.

Ablation with cryotherapy or radiofrequency ablation (RFA) is sometimes used to treat small kidney cancers. Research is now under way to determine how useful these techniques are in the long term and to refine them further.

Targeted therapies

Because chemotherapy is not very effective against advanced kidney cancer, targeted therapies are now usually the first-line option to treat kidney cancers that cannot be removed by surgery. At this time they are usually given separately. Clinical trials are now under way to see if combining these drugs, either with each other or with other types of treatment, might be better than using them alone.

Many new targeted therapies drugs are now being tested as well, with including cediranib and trebananib. Some of these are already showing promise in early clinical trials.

The potential roles of giving targeted drugs before and after surgery (called neoadjuvant and adjuvant therapy, respectively) are also being studied. The hope with these studies is to increase cure rates, and perhaps (in the case of neoadjuvant therapy) to shrink tumors to allow for less extensive surgery. This could help people retain more of their normal kidney function.

Along with finding new medicines and looking at the best way to combine and sequence existing ones, a major area of research is finding better ways to select the best treatment for each person. That is, finding factors about a person’s cancer that make it more likely to respond to a certain medicine. This can increase the chances of being helped by a therapy and lower the chances a person will get a treatment that is unlikely to help them (and which could still have side effects).
Immunotherapy

Kidney cancer seems to be one of the cancers most likely to respond to immunotherapy, which is treatment that boosts the body’s immune response against cancer cells. Clinical trials of many new immunotherapy methods are being tested. Basic research is now being directed toward a better understanding of the immune system, how to activate it, and how it reacts to cancer.

Drugs that block PD-1 and PD-L1

Cancer cells use natural pathways in the body to help avoid being detected and destroyed by the immune system. For example, they often have a protein called PD-L1 on their surface that helps them evade the immune system. New drugs that block the PD-L1 protein, or the corresponding PD-1 protein on immune cells called T cells, can help the immune system recognize the cancer cells and attack them.

Several drugs that block these proteins are now in development, and some have shown a lot of promise against kidney cancer. For example, nivolumab (Opdivo) is now approved for use in people with advanced kidney cancer, as it has been shown to help some people live longer. Large studies of several other new drugs are now being done.

Vaccines

Several types of vaccines for boosting the body’s immune response to kidney cancer cells are being tested in clinical trials. Unlike vaccines against infections like measles or mumps, these vaccines are designed to help treat, not prevent, kidney cancer. One possible advantage of these types of treatments is that they seem to have very limited side effects. At this time, vaccines are only available in clinical trials.

There are several ways to create vaccines that might stimulate the immune system:

- In one approach, cancer cells (removed during surgery) are altered in the lab to make them more likely to cause an immune response and are then returned to the body. In another approach, a special virus is altered so it is no longer infectious, but it carries a gene for a protein often found on cancer cells. Once the virus is injected into the body, the hope is that the protein will cause the immune system to react against cancer cells anywhere in the body.

- In another approach, immune system cells are removed from the blood. The cells are treated with cytokines and exposed to killed tumor cells to make cells called dendritic cells. These cells are then injected into the body to stimulate the immune system to fight the cancer. Early results have been promising, but more studies are needed.

Combining vaccines with targeted agents or other agents to help them work better is also being studied.
Bone marrow or peripheral blood stem cell transplant

In people with advanced kidney cancer, the person’s own immune system is not effectively controlling the cancer. Another approach to immunotherapy is to try to use someone else’s immune system to attack the cancer cells.

First, very early forms of immune system cells (called *stem cells*) are collected from a compatible donor, either from their bone marrow or their blood. The person with cancer is then treated with chemotherapy drugs, either in lower doses (called a *mini* or *non-myeloablative stem cell transplant*) to suppress the immune system or in higher doses to cause more severe damage to the immune cells and other components of the bone marrow. They are then given the donor stem cells to try to build a new immune system that will be more likely to attack the cancer cells.

Some early studies of this technique have been promising, finding that it may help shrink kidney cancers in some people. But it can also cause major complications, and side effects can be severe. Until more is known about its safety and usefulness, it will probably only be available in clinical trials.

Learn more about the procedure in *Stem Cell Transplant (Peripheral Blood, Bone Marrow, and Cord Blood Transplants)*.

Additional resources for kidney cancer

We have a lot more information that you might find helpful. Explore www.cancer.org or call our National Cancer Information Center toll-free number, 1-800-227-2345. We’re here to help you any time, day or night.

National organizations and websites

Along with the American Cancer Society, other sources of information and support include:

Urology Care Foundation
Toll-free number: 1-866-828-7866
Website: www.urologyhealth.org

 Information about kidney cancer and other cancers of the urological system. Some available in Spanish.

Kidney Cancer Association
For toll-free number, click phone icon at:
www.kidneycancer.org/about-us/contact-us
Nurse hotline: 1-503-215-7921
Website: www.kidneycancer.org
Information, education, online and phone chats with health professionals, nurse hotline, and doctor locator service. Some online information available in Spanish, French, Portuguese, German, or Italian.

National Cancer Institute
Toll-free number: 1-800-422-6237 (1-800-4-CANCER) TTY: 1-800-332-8615
Website: www.cancer.gov
Offers a wide variety of free, accurate, up-to-date information about many types of cancer to patients, their families, and the general public; has information about coping and family; and can also help people find clinical trials in their area.

National Kidney Foundation
Toll-free number: 1-855-653-2273 (1-855-NKF-CARES)
Website: www.kidney.org
Information about kidney cancer and other urinary tract diseases, and organ donation. (Spanish materials are also available.)

VHL (Von Hippel-Lindau) Family Alliance
Toll-free number: 1-800-767-4845
Phone number: 1-617-277-5667
Website: www.vhl.org
Information about being diagnosed with and living with von Hippel-Lindau disease for patients and caregivers; also resources and online discussions. Support groups available in some areas.

Inclusion on this list does not imply endorsement by the American Cancer Society.

No matter who you are, we can help. Contact us anytime, day or night, for information and support. Call us at 1-800-227-2345 or visit www.cancer.org.

References: Kidney cancer detailed guide

Last Medical Review: 2/24/2014
Last Revised: 5/16/2016

2014 Copyright American Cancer Society