Diesel Exhaust and Cancer Risk

What is diesel exhaust?

Diesel is a type of fuel derived from crude oil. Diesel fuel is used in most large engines, including those used in many trucks, buses, trains, construction and farm equipment, generators, ships, and in some cars.

Diesel exhaust is made up of 2 main parts: gases and soot (particles). Each of these, in turn, is made up of many different substances.

- The gas portion of diesel exhaust is mostly carbon dioxide, carbon monoxide, nitric oxide, nitrogen dioxide, sulfur oxides, and hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs).
- The soot (particulate) portion of diesel exhaust is made up of particles such as carbon, organic materials (including PAHs), and traces of metallic compounds.

Both the gases and the soot of diesel exhaust contain PAHs.

Exhaust from diesel engines brings a complex mixture of soot and gases to roadways, cities, farms, and other places. Health concerns about diesel exhaust relate not only to cancer, but also to other health problems such as lung and heart diseases.

How are people exposed to diesel exhaust?

Exposure to diesel exhaust can occur in a variety of ways:

- Breathing the exhaust from running diesel engines, such as those found in trucks, buses, and construction equipment.
- Breathing the exhaust from diesel generators used in power outages or other emergencies.
- Breathing the exhaust from diesel-powered ships or marine vessels.
- Breathing the exhaust from diesel-powered engines used in farming and construction equipment.
- Breathing the exhaust from diesel-powered engines used in indoor settings, such as in workshops or garages.

The health risks associated with diesel exhaust exposure can vary depending on the duration and intensity of exposure. Long-term exposure to diesel exhaust has been linked to an increased risk of certain types of cancer, including lung cancer. Exposure can also lead to respiratory problems such as asthma and chronic obstructive pulmonary disease (COPD).

Can I reduce my exposure to diesel exhaust?

There are several steps you can take to reduce your exposure to diesel exhaust:

- Avoid spending time in areas with high levels of diesel exhaust, such as near busy roads or construction sites.
- Use personal protective equipment, such as respirators, to filter out diesel exhaust particles.
- Keep windows closed when driving or operating diesel-powered equipment.
- Use alternative forms of transportation, such as public transit or walking, to reduce exposure.
- Ensure that diesel-powered equipment is well-maintained and regularly serviced to reduce emissions.
People can be exposed to diesel exhaust at work, around the home, or while traveling mainly by breathing in the soot and gases. Diesel exhaust exposure is widespread in the modern world.

The amount of diesel exhaust people are exposed to varies greatly. Measuring these exposures is not easy because diesel exhaust is chemically complex and many parts of it are also found in a lot of other sources. This is a major challenge when trying to study the health effects of diesel exhaust.

At work

People with some of the highest work exposures include truck drivers, toll booth workers, miners, forklift drivers and other heavy machinery operators, railroad and dock workers, and garage workers and mechanics. Some farm workers also spend a lot of time around diesel exhaust.

Where you live and play

People can also be exposed to diesel exhaust where they live and play, although this is typically at lower levels than in the workplace. Exposures are highest where diesel traffic is heaviest, such as along major highways and in cities.

While traveling in a vehicle

Exposure to diesel exhaust may be higher, especially when traveling on roads with heavier truck or bus traffic. Commuting for work is a potential source of diesel exhaust exposure for many people. One particular area of concern is children’s exposures to diesel exhaust and other pollutants while riding in school buses, as the buses themselves typically run on diesel fuel.

Does diesel exhaust cause cancer?

Two main types of studies are used to try to figure out if a substance or exposure causes cancer.

- **Studies in labs**: In these studies, animals are exposed to a substance (often in very large doses) to see if it causes tumors or other health problems. Researchers might also expose normal cells in a lab dish to the substance to see if it causes the types of changes seen in cancer cells. It’s not always clear if the results from these types of studies will apply to humans, but lab studies are a good way to find out if a
substance might possibly cause cancer.

- **Studies in people:** Another type of study looks at cancer rates in different groups of people. Such a study might compare the cancer rate in a group exposed to a substance to the cancer rate in a group not exposed to it, or compare it to the cancer rate in the general population. But sometimes it can be hard to know what the results of these studies mean, because many other factors might affect the results.

In most cases neither type of study provides enough evidence on its own, so researchers usually look at both lab-based and human studies when trying to figure out if something causes cancer.

Results of studies in the lab

In studies of cells done in lab dishes, diesel exhaust (as soot or chemical extracts) has been found to cause changes in the cells’ DNA. These types of changes are usually needed for cancer to develop, although not all substances that cause DNA changes also cause cancer.

Several studies have found that long-term, heavy exposure to diesel exhaust can cause lung cancer in lab animals such as rats.

Results of studies in people

It’s not easy to study the possible health effects of diesel exhaust in people. First, it is often very hard to correctly define and measure the level of exposure. It can also be hard to account for the other cancer risk factors that people exposed to diesel exhaust might have, such as smoking.

Lung cancer

Lung cancer is the major cancer thought to be linked to diesel exhaust. Several studies of workers exposed to diesel exhaust have shown small but significant increases in risk of lung cancer. Men with the heaviest and most prolonged exposures, such as railroad workers, heavy equipment operators, miners, and truck drivers, have been found to have higher lung cancer death rates than unexposed workers. Based on the number of people exposed at work, diesel exhaust may pose a substantial health risk.

The possible link between lung cancer and exposure to diesel exhaust outside the workplace has not been studied extensively.
Other cancers

Several studies have looked for possible links between diesel exhaust and other cancers, including cancers of the bladder, larynx (voice box), esophagus, stomach, and pancreas. Studies have also looked for links to blood system cancers such as lymphomas and leukemias (including childhood leukemia). While some studies have found possible links, others have not. More research is needed to show if diesel exhaust exposure is linked to any of these other cancers.

What expert agencies say about diesel exhaust

Several national and international agencies study substances in the environment to determine if they can cause cancer. (A substance that causes cancer or helps cancer grow is called a carcinogen.) The American Cancer Society looks to these organizations to evaluate the risks based on evidence from laboratory, animal, and human research studies.

Some of these expert agencies have classified diesel exhaust as to whether it can cause cancer, based largely on the possible link to lung cancer.

The International Agency for Research on Cancer (IARC) is part of the World Health Organization (WHO). Its major goal is to identify causes of cancer. IARC classifies diesel engine exhaust as “carcinogenic to humans,” based on sufficient evidence that it is linked to an increased risk of lung cancer. IARC also notes that there is “some evidence of a positive association” between diesel exhaust and bladder cancer.

The National Toxicology Program (NTP) is formed from parts of several different US government agencies, including the National Institutes of Health (NIH), the Centers for Disease Control and Prevention (CDC), and the Food and Drug Administration (FDA). The NTP has classified exposure to diesel exhaust particulates as “reasonably anticipated to be a human carcinogen,” based on limited evidence from studies in humans (mainly linking it to lung cancer) and supporting evidence from lab studies.

The US Environmental Protection Agency (EPA) maintains the Integrated Risk Information System (IRIS), an electronic database that contains information on human health effects from exposure to various substances in the environment. The EPA classifies diesel exhaust as “likely to be carcinogenic to humans.”

The National Institute for Occupational Safety and Health (NIOSH) is part of the CDC that studies exposures in the workplace. NIOSH has determined that diesel exhaust is a “potential occupational carcinogen.”
Can I reduce my exposure to diesel exhaust?

Diesel exhaust can cause health problems and can most likely increase the risk of lung cancer (and possibly other cancers).

Since most people’s exposure is from exhaust near highways and other roads, government regulations may be as important as personal choices in limiting exposure to potentially harmful chemicals in diesel exhaust. For example, as a result of EPA regulations and improvements in technology, new diesel engines give off much lower amounts of certain chemicals than older engines. Still, it’s not yet clear how much this might lower the risks, and many older diesel engines are still in use, so it makes sense to avoid exposure whenever possible.

At work

If you are exposed to diesel exhaust at work, there are ways to reduce or prevent exposures. Some of these measures can also help protect you from other chemical exposures that are likely to happen in the workplace.

If you work in or around vehicles that run on diesel fuel, you might be able to limit the amount of time you spend near engines while they are running. Limiting the time spent near idling engines may help lower your exposure to fumes.

Talk with your employer to be sure that you are protected adequately. Personal protective equipment, such as respirators, may be a key part of a workplace protective program. If needed, engineering changes, such as ventilating the exhaust away from where you breathe, can also be important.

For more information on preventing or reducing workplace exposures at your job, consult your company’s safety and health manager. If needed, you can get additional assistance from the Occupational Safety & Health Administration (OSHA), the government agency responsible for enforcing workplace safety.

Where you live and play

If you are exposed to diesel exhaust fumes in your environment, you can take some of the same precautions. For example, try to avoid or limit spending time near large sources of diesel exhaust, such as near trucks and buses. Commuting to and from work
exposes many people to possible sources of diesel exhaust, whether they are in a car or on some type of public transportation. For some people, working from home (telecommuting or teleworking) might be an option to lower their exposure, as well as to save money on commuting expenses.

On a governmental level, regulations such as the Clean Air Act and programs such as the EPA’s National Clean Diesel Campaign are designed to reduce diesel emissions from trucks and other large engines, lowering public exposure to diesel exhaust.

Another important program is Clean School Bus USA. Children can be exposed to diesel exhaust during school bus travel or when standing near running school buses outside of school. Clean School Bus USA brings together partners from business, education, transportation, and public-health organizations to reduce children’s exposure to bus-related air pollutants by aiming to:

- Reduce unnecessary school bus idling
- Replace older buses with newer, less-polluting buses
- Upgrade existing buses with technologies to reduce their emissions

References

Madden MC. Complex issues with examining diesel exhaust toxicity: Is the task getting easier or harder? *Exp Toxicol Pathol.* 2008;60:135140.

Last Revised: July 27, 2015

Written by

Our team is made up of doctors and oncology certified nurses with deep knowledge of cancer care as well as journalists, editors, and translators with extensive experience in medical writing.

American Cancer Society medical information is copyrighted material. For reprint requests, please see our Content Usage Policy (www.cancer.org/about-us/policies/content-usage.html).