About Bone Cancer

Overview and Types

If you have been diagnosed with bone cancer or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start.

- What Is Bone Cancer?

Research and Statistics

See the latest estimates for new cases of bone cancer and deaths in the US and what research is currently being done.

- Key Statistics About Bone Cancer
- What’s New in Bone Cancer Research?

What Is Bone Cancer?

The information here focuses on primary bone cancers (cancers that start in bones) that most often are seen in adults. Information on Osteosarcoma\(^1\), Ewing Tumors (Ewing sarcomas)\(^2\), and Bone Metastases\(^3\) is covered separately.

Cancer starts when cells begin to grow out of control. Cells in nearly any part of the body can become cancer, and can then spread (metastasize) to other parts of the body. To learn more about cancer and how it starts and spreads, see What Is Cancer?\(^4\)
Bone cancer is an uncommon type of cancer that begins when cells in the bone start to grow out of control. To understand bone cancer, it helps to know a little about normal bone tissue.
Bone is the supporting framework for your body. The hard, outer layer of bones is made of compact (cortical) bone, which covers the lighter spongy (trabecular) bone inside. The outside of the bone is covered with fibrous tissue called **periosteum**.

Some bones have a space inside called the **medullary cavity**, which contains the soft, spongy tissue called **bone marrow** (discussed below). The tissue lining the medullary cavity is called **endosteum**.

Most bones start out as a softer, more flexible form of tissue called **cartilage**. Cells in the body then lay calcium down onto the cartilage to form bone. After the bone is formed, cartilage may remain at the ends to act as a cushion between bones. This cartilage, along with ligaments and other tissues connect bones to form a **joint**. In adults, cartilage is mainly found at the end of some bones that are part of a joint.

Cartilage can also be found in other parts of the body, such as on the ends of the ribs, in parts of the nose and ears, and in the trachea (windpipe) and larynx (voice box).

Bone itself contains 2 kinds of cells.

- **Osteoblasts** are cells that lay down new bone.
- **Osteoclasts** are cells that dissolve old bone.

Bone often looks as if it doesn’t change much, but it’s actually very active. New bone is always forming while old bone is dissolving. This helps keep the bones strong.

In some bones the **marrow** is only fatty tissue. In other bones it contains blood-forming cells. These cells make new red blood cells, white blood cells, and blood platelets. There are other cells in the bone marrow, too, such as **plasma** cells and **fibroblasts**.

Any of these bone cells can develop into cancer.

Primary bone cancers versus bone metastasis

Cancers that start in the bones are called **primary bone cancers**. These types of cancers aren’t very common.

Most of the time when an adult with cancer is told they have cancer in the bones, the doctor is talking about a cancer that started somewhere else and then spread to the bones. This is called **bone metastasis**. It can happen with many different types of **advanced cancer**, like **breast** cancer, **prostate** cancer, and **lung** cancer. When the cancer cells in the bone are looked at under a microscope, they look like the cancer
cells in the organ they came from.

So, if someone has lung cancer that has spread to bone, the cancer cells in the bone look and act like lung cancer cells, not bone cancer cells, so they need treatments that are used for lung cancer.

To learn more about cancer that has spread to the bones, see Bone Metastasis9.

Types of primary bone cancers

Primary bone cancers (cancers that start in the bone itself) are also known as bone sarcomas. (Sarcomas are cancers that start in bone, muscle, fibrous tissue, blood vessels, fat tissue, as well as some other tissues. They can develop anywhere in the body.)

There are many kinds of primary bone cancer. Some are rare.

Osteosarcoma

Osteosarcoma (also called osteogenic sarcoma) is the most common primary bone cancer. It starts in an early form of bone cells. It most often occurs in young people between the ages of 10 and 30, but about 1 in 10 osteosarcomas develop in people older than 60. It's rare in middle-aged people, and is more common in males than females. These tumors develop most often in bones of the arms, legs, or pelvis.

This type of cancer is not discussed further on our Bone Cancer pages. For more information on it, see Osteosarcoma10.

Ewing tumor (Ewing sarcoma)

Ewing tumors are the second most common type of primary bone cancer in children, teens, and young adults, and the third most common type of bone cancer overall. These tumors are rare in adults older than 30. They occur most often in white people and are rare among African Americans and Asian Americans.

Most Ewing tumors develop in bones, but they can start in other tissues and organs. The most common sites for this cancer are the hip (pelvic) bones, the bones in the chest wall (such as the ribs or shoulder blades), the bones of the spine, and the long bones of the legs.

This type of cancer is not discussed further on our Bone Cancer pages. For more
information on it, see Ewing Family of Tumors11.

Chondrosarcoma

Chondrosarcoma starts in early forms of cartilage cells. It's the second most common primary bone cancer. It's rare in people younger than 20, and the risk of chondrosarcoma goes up as people get older.

Chondrosarcomas can start in any place there's cartilage. Most develop in bones like the pelvic (hip) bones, legs, or arms. Some start in the trachea, larynx, chest wall, shoulder blades, ribs, or skull.

Benign (non-cancerous) tumors such as enchondromas and osteochondromas are more common in the cartilage than are chondrosarcomas. These benign tumors rarely turn into cancer. People who have many of these tumors have a slightly higher chance of developing cancer, but this isn’t common.

Chondrosarcomas are given a grade from 1 (I) to 3 (III), which is a measure of how fast they are likely to grow. The lower the grade, the slower the cancer tends to grow and the less likely it is to spread:

- Low-grade (grade I) chondrosarcomas, also called atypical cartilaginous tumors, tend to grow the slowest and are very unlikely to spread.
- Intermediate-grade (grade II) chondrosarcomas are slightly more likely to spread.
- High-grade (grade III) chondrosarcomas are the most likely to spread.

Most chondrosarcomas are grade I or grade II.

Uncommon subtypes of chondrosarcoma

A small number of chondrosarcomas have distinctive features that can be seen with a microscope. These uncommon subtypes often have a different prognosis (outlook):

- **Dedifferentiated chondrosarcomas** start out as typical chondrosarcomas, but then some parts of the tumor change into cells like those of a high-grade sarcoma (such as an osteosarcoma, fibrosarcoma, or high-grade undifferentiated pleomorphic sarcoma). This type of chondrosarcoma tends to develop in older adults and grows faster than most other chondrosarcomas.
- **Mesenchymal chondrosarcomas** tend to develop in younger adults. They often grow quickly, and they are more likely to come back after treatment.
• Clear cell chondrosarcomas are rare and tend to grow slowly. They seldom spread to other parts of the body unless they have already come back several times in the original location.

High-grade undifferentiated pleomorphic sarcoma (UPS) of bone

This cancer was previously known as malignant fibrous histiocytoma (MFH) of bone. Undifferentiated pleomorphic sarcoma (UPS) most often starts in soft tissues (connective tissues such as ligaments, tendons, fat, and muscle). It’s rare in bones, but when it does occur, it usually affects the legs (often around the knees) or arms. This cancer most often occurs in elderly and middle-aged adults. It’s rare in children. It tends to grow locally, but sometimes it can spread to distant parts of the body, like the lungs.

Fibrosarcoma of bone

Fibrosarcoma is another type of cancer that develops more often in soft tissues than it does in bones. It usually occurs in middle-aged adults. Bones in the legs, arms, and jaw are most often affected.

Giant cell tumor of bone

This type of primary bone tumor can be either benign (not cancer) or malignant. The benign form is more common. These tumors are most common in people in their 20s and 30s.

Giant cell bone tumors typically affect the legs (usually near the knees) or arms. They don’t often spread to distant parts of the body, but after surgery they can come back (even more than once) in the place where they started. With each recurrence, the tumor becomes a bit more likely to spread to other parts of the body (most often to the lungs). Rarely, a malignant giant cell bone tumor spreads to other parts of the body without first recurring locally.

Chordoma

This uncommon type of bone tumor occurs in the bones of the spine, most often at the bottom of the spine (sacrum) or the base of the skull. It develops most often in adults older than 30. It’s about twice as common in men as in women. Rarely it can develop in children, as well.
Chordomas tend to grow slowly and often do not spread to other parts of the body. They often come back in the same area if they are not removed completely. If they do spread, they most often go to the lymph nodes, lungs, or liver.

Primary bone tumors that are not cancer

Some tumors that start in the bones are benign (not cancer). Benign tumors do not spread to other parts of the body and are not usually life threatening. When they need to be treated they often can be cured with surgery. Types of benign bone tumors include:

- Osteoid osteoma
- Osteoblastoma
- Osteochondroma
- Enchondroma
- Chondromyxoid fibroma

Benign giant cell tumors of bone can also be included here.

Benign bone tumors won't be discussed further here.

Other cancers that develop in bones

Some other cancers develop in the bones, but they don't start in the actual bone cells. These cancers start in early forms of blood cells or immune cells in the bone marrow (the soft inner part of some bones). These are not considered to be primary bone cancers, and they are discussed in more detail elsewhere.

Multiple myeloma

In multiple myeloma, many tumors develop in the bones, but it's not a primary bone cancer because it starts in plasma cells (a type of immune cell) in the bone marrow. Sometimes, myeloma can be found as a single tumor (called a plasmacytoma) in a bone, but most often it has spread to other bones, so it's treated as a widespread disease.

For more on this type of cancer, see [Multiple Myeloma](#).

Leukemias
Leukemias start in the blood-forming cells of the bone marrow, not in the bone itself. There are many types of leukemia. Most of these are cancers of early forms of white blood cells, but they can also start in other types of blood cells.

For more on this type of cancer, see Leukemia13.

Non-Hodgkin lymphomas

Non-Hodgkin lymphomas start in early forms of white blood cells called lymphocytes. Most often these cancers develop in lymph nodes or in other parts of the body that contain lymph tissue. But in rare cases, a lymphoma can show up first in the bones. This is known as a primary non-Hodgkin lymphoma of bone (PLB). It can affect one or many bones.

PLB is treated based on the type of lymphoma14 it is. (Most PLBs are diffuse large B-cell lymphomas.) The outlook is generally similar to other lymphomas of the same type and stage.

For more information on the treatment of lymphoma, see Non-Hodgkin Lymphoma15.

Hyperlinks

4. www.cancer.org/treatment/understanding-your-diagnosis/what-is-cancer.html
Key Statistics About Bone Cancer

How common is bone cancer?

The American Cancer Society’s estimates for primary cancer of the bones and joints for 2023 are:

- About 3,970 new cases diagnosed (2,160 in males; 1,810 in females)
- About 2,140 deaths (1,200 in males; 940 in females)

This includes cancers in both children and adults.

Primary bone cancers (cancers that start in the bones) are uncommon, accounting for less than 1% of all cancers. In adults, cancers that spread to the bones from other organs (known as bone metastasis) are much more common than primary bone cancers.

Osteosarcoma is the most common type of primary bone cancer overall, followed by

References

Last Revised: June 17, 2021
chondrosarcoma and Ewing tumors\(^3\) (Ewing sarcomas). But this varies by age group.

In adults, the most common primary bone cancer is chondrosarcoma. This is followed by osteosarcomas, chordomas, and Ewing tumors. Other types of bone cancer are much less common.

In children and teens, osteosarcoma and Ewing tumors are much more common than chondrosarcoma or other types of bone cancers.

The prognosis (outlook) for people with bone cancer depends on many factors, including the type of bone cancer, the location of the tumor, whether the cancer has spread (metastasized) when it’s first found, the person’s age and overall health, and how well the cancer responds to treatment. For more on this, see Survival Rates for Bone Cancer\(^4\).

Visit the American Cancer Society’s Cancer Statistics Center\(^5\) for more key statistics.

Hyperlinks

5. cancerstatisticscenter.cancer.org/

References

Last Revised: January 12, 2023
What’s New in Bone Cancer Research?

The information here focuses on primary bone cancers (cancers that start in bones) that most often are seen in adults. Information on Osteosarcoma\(^1\), Ewing Tumors\(^2\) (Ewing sarcomas), and Bone Metastasis\(^3\) is covered separately.

Many medical centers and other institutions around the world are conducting research on primary bone cancer.

Genetics of primary bone cancers

There has been progress in learning about the gene changes in bone cells that lead to different types of bone tumors. Learning more about these changes might lead to better ways to find bone tumors, tell the different types apart, and treat them, based on their gene defects.

Treatment

Primary bone cancers are rare in adults, so it’s been hard to study the best ways to treat them. Most experts agree that people with primary bone cancers, especially those with advanced or recurrent cancers, might want to consider enrolling in a clinical trial\(^4\) studying new ways to treat these cancers.

There are many clinical trials focusing on treating different types of bone cancer.

Chemotherapy

Some studies are testing new chemotherapy\(^5\) (chemo) drugs. Researchers are also looking for new, and maybe better, ways to use the drugs already available. For instance, doctors are studying whether adding a bisphosphonate called zoledronic acid (Zometa) to the bone cement used to fill in the space left after removing a giant cell tumor might decrease the chance that the tumor will come back in that place.

Another area of interest is long-term chemo side effects. Some types of bone cancer can also occur among younger people, and doctors are trying to learn more about how the chemo drugs used might cause long-term side effects as survivors grow older.

Targeted drug therapy
Unfortunately, chemo isn’t very effective against some type of bone tumors. Newer targeted therapy drugs work differently from standard chemo drugs. They target certain changes in genes and proteins in cancer cells.

A great deal of research is being done to learn more about the genetic changes inside bone cancer cells. Doctors are using what they learn to develop new targeted drugs for some types of bone cancer, as well as to test and use existing targeted drugs that focus on some of these gene changes. These drugs might change the cancer’s ability to grow and spread, providing newer and better ways to treat these tumors.

For instance, targeted drugs already exist for several gene and protein changes researchers have found in chordoma cells. Some of these targeted drugs are now options in treating advanced chordomas. Some targeted drugs are now being tested and used against advanced chondrosarcomas as well.

Immunotherapy

Immunotherapy drugs help the body’s own immune system to recognize and attack cancer cells. There are many types of immunotherapy medicines. Some of these are being studied to see if they can be helpful in treating certain types of bone cancers.

For example, cancer cells sometimes have even more gene and protein changes than typical cancer cells. This makes them even more different from normal cells (and therefore more visible to the immune system). Cancers with these types of changes are more likely to respond to some types of immunotherapy drugs. This includes cancers with high microsatellite instability (MSI-H), with defects in mismatch repair genes (dMMR), or with a high tumor mutational burden (TMB-H). Lab tests of tumor samples can be done to look for these changes.

Unfortunately, only a small proportion of bone cancers have these types of changes. But when they do, immunotherapy drugs called checkpoint inhibitors, such as pembrolizumab (Keytruda), can sometimes be helpful.

Researchers are also studying many other types of immunotherapy for use in treating bone cancers.

Drugs that affect bone cells

Drugs that affect the cells within bones (osteoblasts and osteoclasts) can be helpful in treating some bone tumors. These drugs are more often used for other types of cancer that have spread to the bones, but they might also be helpful in treating some types of
primary bone cancers.

For example, denosumab (Xgeva) is a type of drug known as a RANKL inhibitor, which affects bone cells called osteoclasts. It can be used to treat some giant cell tumors of bone.

Zoledronic acid (Zometa) is a type of drug known as a bisphosphonate, which affects osteoclasts in a different way. Doctors are studying whether this drug also might be helpful in treating some types of bone tumors, such as giant cell tumors of bone.

Radiation therapy

The most common type of radiation therapy to treat most types of cancer uses beams of x-rays. But high doses of x-rays are needed to treat most types of bone tumors, which can affect nearby areas and lead to side effects. Doctors are now looking to other types of radiation that might be safer or more effective.

For example, proton beam radiation uses beams made up of protons (parts of atoms), which have properties that allow areas near the tumor to get less radiation. Proton radiation is often used to treat bone tumors near very sensitive organs, like the brain or the spine. It is sometimes used for tumors in other parts of the body, too. And as advances make this treatment even more precise and more widely available, it may be found to work better in treating bone tumors. There are only a limited number of proton beam treatment centers in the United States at this time.

A much less common form of particle radiation, carbon ion radiation, uses heavier particles that might cause more damage to the tumor. This may be helpful in treating some types of bone tumors that do not respond to current treatments, but more research is needed to be sure. This treatment is only available in a handful of centers worldwide, and there are no carbon ion radiation facilities in the United States at this time.

Hyperlinks

References

Last Revised: June 17, 2021

Written by

The American Cancer Society medical and editorial content team (www.cancer.org/cancer/acs-medical-content-and-news-staff.html)

Our team is made up of doctors and oncology certified nurses with deep knowledge of
cancer care as well as journalists, editors, and translators with extensive experience in medical writing.

American Cancer Society medical information is copyrighted material. For reprint requests, please see our Content Usage Policy (www.cancer.org/about-us/policies/content-usage.html).