Bone Cancer Early Detection, Diagnosis, and Staging

Detection and Diagnosis

Catching cancer early often allows for more treatment options. Some early cancers may have signs and symptoms that can be noticed, but that is not always the case.

- Can Bone Cancer Be Found Early?
- Signs and Symptoms of Bone Cancer
- How is Bone Cancer Diagnosed?

Stages and Outlook (Prognosis)

After a cancer diagnosis, staging provides important information about the extent of cancer in the body and anticipated response to treatment.

- Bone Cancer Stages
- Survival Statistics for Bone Cancer

Questions to Ask About Bone Cancer

Here are some questions you can ask your cancer care team to help you better understand your cancer diagnosis and treatment options.

- What Should You Ask Your Doctor About Bone Cancer?

Can Bone Cancer Be Found Early?

Tests are routinely used to detect early stages of some types of cancer (such as breast, cervical, colorectal, and skin cancer) before they cause symptoms. At this time, no
special tests are routinely recommended to detect bone cancers early. The best strategy for early diagnosis is prompt attention to the signs and symptoms of this disease.

- References

See all references for Bone Cancer

Signs and Symptoms of Bone Cancer

Pain

Pain in the affected bone is the most common complaint of patients with bone cancer. At first, the pain is not constant. It may be worse at night or when the bone is used (for example, leg pain when walking). As the cancer grows, the pain will be there all the time. The pain increases with activity and the person might limp if a leg is involved.

Swelling

Swelling in the area of the pain may not occur until weeks later. It might be possible to feel a lump or mass depending on the location of the tumor.

Cancers in the bones of the neck can cause a lump in the back of the throat that can lead to trouble swallowing or make it hard to breathe.

Fractures

Bone cancer can weaken the bone it develops in, but most of the time the bones do not fracture (break). People with a fracture next to or through a bone cancer usually describe sudden severe pain in a limb that had been sore for a few months.
Other symptoms

Cancer in the bones of the spine can press on nerves, leading to numbness and tingling or even weakness.

Cancer can cause weight loss and fatigue. If the cancer spreads to internal organs it may cause other symptoms, too. For example, if the cancer spreads to the lung, you may have trouble breathing.

Any of these symptoms are more often due to conditions other than cancer, such as injuries or arthritis. Still, if these problems go on for a long time without a known reason, you should see your doctor.

- References
 See all references for Bone Cancer

How is Bone Cancer Diagnosed?

A patient’s symptoms, physical exam, and results of imaging tests, and blood tests may suggest that bone cancer is present. But in most cases, doctors must confirm this suspicion by examining a tissue or cell sample under a microscope (a procedure known as a biopsy).

Other diseases, such as bone infections, can cause symptoms and imaging results that could be confused with bone cancer. Accurate diagnosis of a bone tumor often depends on combining information about its location (what bone is affected and even which part of the bone is involved), appearance on x-rays, and appearance under a microscope.

Since a single bone metastasis can have the same signs and symptoms as a primary bone tumor, many doctors require a biopsy to diagnose a patient’s first bone metastasis. After that, additional bone metastases can usually be diagnosed based on x-rays and other imaging tests.
Imaging tests to detect bone cancer

X-rays

Most bone cancers show up on x-rays of the bone. The bone at the site of the cancer may appear “ragged” instead of solid. The cancer can also appear as a hole in the bone. Sometimes doctors can see a tumor around the defect in the bone that might extend into nearby tissues (such as muscle or fat). The radiologist (doctor who specializes in reading x-rays) can often tell if a tumor is malignant by the way it appears on the x-ray, but only a biopsy can absolutely determine that.

A chest x-ray is often done to see if bone cancer has spread to the lungs.

Computed tomography (CT) scans

CT scans are helpful in staging cancer. They help tell if your bone cancer has spread into your lungs, liver, or other organs. These scans also show the lymph nodes and distant organs where metastatic cancer might be present.

CT scans can also be used to precisely guide a biopsy needle into a suspected metastasis. For this procedure, called a CT-guided needle biopsy, the patient remains on the CT scanning table while a radiologist advances a biopsy needle toward the location of the mass. CT scans are repeated until the doctors are confident that the needle is within the mass. (See the section, “Needle biopsy.”)

Magnetic resonance imaging (MRI) scans

MRI scans are often the best test for outlining a bone tumor. They are also particularly helpful for looking at the brain and spinal cord. MRI scans are a little more uncomfortable than CT scans. First, they take longer -- often up to an hour. Also, you have to be placed inside a tube, which is confining and can upset people with claustrophobia (fear of enclosed spaces). The machine also makes a thumping noise that you may find disturbing. Some places provide headphones with music to block this out.

Radionuclide bone scans

This procedure helps show if a cancer has spread to other bones. It can find metastases earlier than regular x-rays. Bone scans also can show how much damage
the primary cancer has caused in the bone.

For this test, the patient receives an injection of radioactive material called technetium diphosphonate. The amount of radioactivity used is very low and causes no long-term effects. This substance is attracted to diseased bone cells throughout the entire skeleton. Areas of diseased bone will be seen on the bone scan image as dense, gray to black areas, called “hot spots.” These areas suggest metastatic cancer is present, but arthritis, infection, or other bone diseases can also cause a similar pattern. To distinguish among these conditions, the cancer care team may use other imaging tests or take bone biopsies.

Positron emission tomography (PET or PET) scans

PET scans use glucose (a form of sugar) that contains a radioactive atom. A special camera can detect the radioactivity. Cancer cells absorb a lot of the radioactive sugar because of their high rate of metabolism. PET scans are useful in looking for cancer throughout your entire body. It can sometimes help tell if a tumor is cancerous or benign. It is being combined with CT scans to better pinpoint some kinds of cancer.

Biopsy

A biopsy is a sample of tissue taken from a tumor so that it can be looked at under a microscope. This is the only way to know that the tumor is cancer and not some other bone disease. If cancer is present, the biopsy can tell the doctor if it is a primary bone cancer or cancer that started somewhere else and spread to the bone (metastasis). Several types of tissue and cell samples are used to diagnose bone cancer. It is very important a surgeon with experience in diagnosing and treating bone tumors do the biopsy procedure.

The surgeon will choose a biopsy method based on whether the tumor looks benign or malignant and exactly what type of tumor is most likely (based on the bone x-rays, the patient’s age, and the location of the tumor). Some kinds of bone tumors can be recognized from needle biopsy samples, but larger samples (from a surgical biopsy) are often needed to diagnose other types. Whether the surgeon plans to remove the entire tumor at the time of the biopsy will also influence the choice of biopsy type. The wrong kind of biopsy can sometimes make it hard later for the surgeon to remove all of the cancer without having to also remove all or part of the arm or leg containing the tumor. It also may cause the cancer to spread.

Needle biopsy
There are 2 types of needle biopsies: fine needle biopsies and core needle biopsies. For both types, a local anesthetic is first used to numb the area for the biopsy. For fine needle aspiration (FNA), the doctor uses a very thin needle attached to a syringe to withdraw a small amount of fluid and some cells from the tumor mass. Sometimes, the doctor can aim the needle by feeling the suspicious tumor or area that is near the surface of the body. If the tumor cannot be felt because it is too deep, the doctor can guide the needle while viewing a CT scan. This is called a CT guided needle biopsy and it is often done by an x-ray specialist known as an interventional radiologist. In a core needle biopsy, the doctor uses a larger needle to remove a small cylinder of tissue (about 1/16 inch in diameter and 1/2 inch long). Many experts feel that a core needle biopsy is better than FNA to diagnose a primary bone cancer.

Surgical bone biopsy

In this procedure, a surgeon needs to cut through the skin to reach the tumor in order to remove a small piece of tissue. This is also called an incisional biopsy. If the entire tumor is removed (not just a small piece), it is called an excisional biopsy. These biopsies are often done with the patient under general anesthesia (asleep). They can also be done using a nerve block, which numbs a large area. If this type of biopsy is needed, it is important that the surgeon who will later remove the cancer also be the one to do the biopsy.

- References
 See all references for Bone Cancer

Last Medical Review: March 21, 2014 Last Revised: January 21, 2016

American Cancer Society medical information is copyrighted material. For reprint requests, please see our [Content Usage Policy](#).

Bone Cancer Stages

After someone is diagnosed with bone cancer, doctors will try to figure out if it has spread, and if so, how far. This process is called staging. The stage of a cancer describes how much cancer is in the body. It helps determine how serious the cancer is and how best to treat it. Doctors also use a cancer's stage when talking about survival statistics.
Bone cancers range from stages I (1) through IV (4). As a rule, the lower the number, the less the cancer has spread. A higher number, such as stage IV, means cancer has spread more. And within a stage, an earlier letter means a lower stage. Although each person’s cancer experience is unique, cancers with similar stages tend to have a similar outlook and are often treated in much the same way.

How is the stage determined?

The staging system most often used for bone cancer is the American Joint Committee on Cancer (AJCC) **TNM** system, which is based on 4 key pieces of information:

- The extent (size) of the **tumor (T)**: How large is the cancer? Is it in more than one spot in the bone?
- The spread to nearby lymph **nodes (N)**: Has the cancer spread to nearby lymph nodes?
- The spread (**metastasis**) to distant sites (**M**): Has the cancer spread to the lungs only or to distant sites such as other bones or the liver?
- The **grade** of the cancer (**G**): How abnormal do the cells look when seen under a microscope?

The scale used for grading bone cancer is from 1 to 3. Low-grade cancers (G1) tend to grow and spread more slowly than high-grade (G2 or G3) cancers.

- Grade 1 (G1) means the cancer looks much like normal bone tissue.
- Grade 3 (G3) means the cancer looks very abnormal.
- Grade 2 (G2) falls somewhere in between.

The staging system described below is the most recent AJCC system effective January 2018 and applies to bone cancers of the appendicular skeleton (such as bones in the arms and legs), trunk, skull, and facial bones. Bone cancers of the pelvis and spine use different T categories and it is best to speak with your doctor about your stage for these specific cancers.

Numbers or letters after T, N, and M provide more details about each of these factors. Higher numbers mean the cancer is more advanced. Once a person’s T, N, and M categories have been determined, this information is combined in a process called **stage grouping** to assign an overall stage. For more information see [Cancer Staging](#).

The staging system in the table below uses the **pathologic stage** (also called the **surgical stage**). It is determined by examining tissue removed during **an operation**. Sometimes, if surgery is not possible right away or at all, the cancer will be given a...
clinical stage instead. This is based on the results of a physical exam, biopsy, and imaging tests. The clinical stage will be used to help plan treatment. Sometimes, though, the cancer has spread further than the clinical stage estimates, and may not predict the patient’s outlook as accurately as a pathologic stage.

Cancer staging can be complex, so ask your doctor to explain it to you in a way you understand.

<table>
<thead>
<tr>
<th>AJCC Stage</th>
<th>Stage grouping</th>
<th>Stage description*</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>T1 N0 M0 G1 or GX</td>
<td>The cancer is 8 centimeters (cm) across (about 3 inches) or smaller (T1). It has not spread to nearby lymph nodes (N0) or to distant sites (M0). The cancer is low grade (G1) or the grade cannot be determined (GX).</td>
</tr>
<tr>
<td></td>
<td>T2 N0 M0 G1 or GX</td>
<td>The cancer is larger than 8 cm (3 inches) across (T2). It has not spread to nearby lymph nodes (N0) or to distant sites (M0). The cancer is low grade (G1) or the grade cannot be determined (GX). OR</td>
</tr>
<tr>
<td>IB</td>
<td>T3 N0 M0 G1 or GX</td>
<td>The cancer is in more than one place on the same bone (T3). It has not spread to nearby lymph nodes (N0) or to distant sites (M0). The cancer is low grade (G1) or the grade cannot be determined (GX).</td>
</tr>
<tr>
<td>IIA</td>
<td>T1 N0 M0 G2 or G3</td>
<td>The cancer is 8 centimeters (cm) across (about 3 inches) or less (T1). It has not spread to nearby lymph nodes (N0) or to distant sites (M0). The cancer is high grade (G2 or G3).</td>
</tr>
<tr>
<td>IIB</td>
<td>T2 N0 M0 G2 or G3</td>
<td>The cancer is larger than 8 cm (3 inches) across (T2). It has not spread to nearby lymph nodes (N0) or to distant sites (M0). The cancer is high grade (G2 or G3).</td>
</tr>
<tr>
<td>III</td>
<td>T3 N0 M0 G2 or G3</td>
<td>The cancer is in more than one place on the same bone (T3). It has not spread to nearby lymph nodes (N0) or to distant sites (M0). The cancer is high grade (G2 or G3).</td>
</tr>
<tr>
<td>IVA</td>
<td>Any T N0 M1a Any G</td>
<td>The cancer can be any size and may be in more than one place in the bone (Any T) AND has not spread to nearby lymph nodes (N0). It has spread only to the lungs (M1a). The cancer can be any grade (Any G).</td>
</tr>
<tr>
<td>IVB</td>
<td>Any T N1 Any M Any G</td>
<td>The cancer can be any size and may be in more than one place in the bone (Any T) AND it has spread to nearby lymph nodes (N1). It may or may not have spread to distant organs like the lungs or other bones (Any M). The cancer can be any grade (Any G).</td>
</tr>
</tbody>
</table>
The cancer can be any size and may be in more than one place in the bone (Any T) and it might or might not have spread to nearby lymph nodes (Any N). It has spread to distant sites like other bones, the liver or brain (M1b). The cancer can be any grade (Any G).

* The following additional categories are not listed on the table above:

- **TX**: Main tumor cannot be assessed due to lack of information.
- **T0**: No evidence of a primary tumor.
- **NX**: Regional lymph nodes cannot be assessed due to lack of information.

References

See all references for Bone Cancer

Last Medical Review: December 8, 2017 Last Revised: December 8, 2017

American Cancer Society medical information is copyrighted material. For reprint requests, please see our [Content Usage Policy](#).

Survival Statistics for Bone Cancer

Survival rates are often used by doctors as a standard way of discussing a person’s prognosis (outlook). Some patients with cancer may want to know the survival statistics for people in similar situations, while others may not find the numbers helpful, or may even not want to know them. If you do not want to read about the survival statistics for bone cancer given in the next few paragraphs, skip to the [next section](#).

The 5-year survival rate refers to the percentage of patients who live *at least 5 years* after their cancer is diagnosed. Of course, many people live much longer than 5 years (and many are cured).

Five-year *relative* survival rates assume that some people will die of other causes and compare the observed survival with that expected for people without the cancer. This is a better way to see the impact of the cancer on survival.

In order to get 5-year survival rates, doctors have to look at people who were treated at least 5 years ago. Improvements in treatment since then may result in a more favorable
outlook for people now being diagnosed with bone cancer.

Survival rates are often based on previous outcomes of large numbers of people who had the disease, but they cannot predict what will happen in any particular person’s case. Many factors may affect a person’s outlook, such as the type and grade of the cancer, the patient’s age, where the cancer is located, the size of the tumor, and the treatment received. Your doctor can tell you how the numbers below may apply to you, as he or she is familiar with the aspects of your particular situation.

For all cases of bone cancer combined (in both adults and children), the 5-year relative survival is about 70%. For adults, the most common bone cancer is chondrosarcoma, which has a 5-year relative survival of about 80%. (Survival statistics for Ewing tumors and osteosarcoma can be found in our documents about those cancers.)

- References
See all references for Bone Cancer

Last Medical Review: March 21, 2014 Last Revised: January 21, 2016

What Should You Ask Your Doctor About Bone Cancer?

As you cope with cancer and cancer treatment, you need to have honest, open discussions with your doctor. You should be able to ask any question no matter how small it might seem. Nurses, social workers, and other members of the treatment team may also be able to answer many of your questions.

- What kind of bone cancer do I have?
- Has my cancer spread beyond the primary site?
- What is the stage of my cancer and what does that mean?
- What treatment choices do I have?
- What do you recommend and why?
- What risks or side effects are there to the treatments you suggest?
• What are the chances of my cancer coming back with these treatment plans?
• What should I do to be ready for treatment?
• Based on what you’ve learned about my cancer, how long do you think I'll survive?

In addition to these sample questions, be sure to write down some of your own. For instance, you might want more information about recovery times so that you can plan your work schedule. Or you might want to ask about second opinions or about clinical trials. You can find more information about communicating with your health care team in The Doctor-Patient Relationship.

• References
See all references for Bone Cancer

Last Medical Review: March 21, 2014 Last Revised: January 21, 2016