Eye Cancer Early Detection, Diagnosis, and Staging

Detection and Diagnosis

Catching cancer early often allows for more treatment options. Some early cancers may have signs and symptoms that can be noticed, but that is not always the case.

- Can Eye Cancer Be Found Early?
- Signs and Symptoms of Eye Cancer
- Tests for Eye Cancer

Stages and Outlook (Prognosis)

After a cancer diagnosis, staging provides important information about the extent of cancer in the body and anticipated response to treatment.

- Eye Cancer Stages
- Eye Cancer Survival Rates

Questions to Ask About Eye Cancer

Here are some questions you can ask your cancer care team to help you better understand your cancer diagnosis and treatment options.

- Questions to Ask About Eye Cancer
Can Eye Cancer Be Found Early?

Eye cancer is uncommon, and there are no widely recommended screening tests for this cancer in people at average risk. (Screening is testing for a disease like cancer in people without any symptoms.) Still, some eye cancers can be found early.

Some doctors may recommend yearly eye exams for those at higher risk of eye melanoma\(^1\), such as people with dysplastic nevus syndrome or BAP1 cancer syndrome. Regular eye exams are an important part of everyone’s health care, even if they have no symptoms. Often melanomas of the eye are found during a routine eye exam. When the doctor looks through the pupil at the back of the eye, he or she may see a dark spot that might be an early melanoma.

Many doctors feel that most melanomas start from a nevus (mole), which is a benign (non-cancerous) tumor of pigment cells. If an eye nevus is present, it should be looked at regularly by an ophthalmologist (a doctor who specializes in eye diseases). People who notice a dark spot on the colored part of their eye (the iris) should have a doctor look at it, especially if it is getting bigger.

Hyperlinks

References

Last Medical Review: November 30, 2018 Last Revised: November 30, 2018

Signs and Symptoms of Eye Cancer

Many people with eye melanoma don’t have symptoms unless the cancer grows in certain parts of the eye or becomes more advanced. Other, less serious conditions can also cause many of these symptoms. For example, floaters can be a normal part of the aging process. Still, if you have any of these symptoms, it’s important to see a doctor right away so the cause can be found and treated, if needed.

Signs and symptoms of eye melanomas can include:

- Problems with vision (blurry vision or sudden loss of vision)
- Floaters (spots or squiggles drifting in the field of vision) or flashes of light
- Visual field loss (losing part of your field of sight)
- A growing dark spot on the colored part of the eye (iris)
- Change in the size or shape of the pupil (the dark spot in the center of the eye)
- Change in position of the eyeball within its socket
- Bulging of the eye
- Change in the way the eye moves within the socket

Pain is rare unless the tumor has grown extensively outside the eye.

References
Tests for Eye Cancer

Eye exam

Examination of the eye by an ophthalmologist (a medical doctor specializing in eye diseases) is often the most important first step in diagnosing melanoma of the eye. The doctor will ask if you are having any symptoms and check your vision and eye movement. The doctor will also look for enlarged blood vessels on the outside of the eye, which can be a sign of a tumor inside the eye.

The ophthalmologist may also use special instruments to get a good look inside the eye for a tumor or other abnormality. You may get drops in your eye to dilate the pupil before the doctor uses these instruments.

- An ophthalmoscope (also known as a direct ophthalmoscope) is a hand-held instrument consisting of a light and a small magnifying lens.
- To get a more detailed view than with a direct ophthalmoscope, an indirect ophthalmoscope or a slit lamp may be used. With either instrument, the doctor looks into your eye through a stronger magnified lens, but the slit lamp tends to have more magnification and sits still on a platform in front of you. With an indirect ophthalmoscope, the doctor has you recline a bit, opens your eye, and holds the magnifying lens very close to it while a bright light shines into the eye.
- A gonioscopy lens is a specially mirrored lens that is placed on the cornea (the outer part of the eye) after it is numbed. It can be used to look for tumor growth into areas of the eye that would otherwise be hard to see.
Even if you recently had an eye exam, if you start to have any symptoms, get another exam. Sometimes these tumors are missed or grow so fast that they weren’t there when you were last examined.

If an eye exam suggests you might have eye cancer, more tests such as imaging tests or other procedures might be done to confirm the diagnosis.

Imaging tests

Imaging tests use sound waves, x-rays, or magnetic fields, or radioactive particles to create pictures of the inside of your body. These tests might be done for a number of reasons, including:

- To help find a suspicious area that might be cancer
- To help determine the stage (extent) of the cancer
- To help show if treatment is working
- To look for possible signs of cancer coming back after treatment

Ultrasound

Ultrasound is a very common test used to help diagnose eye melanomas. Ultrasound uses sound waves and their echoes to make pictures of internal organs or masses. For this test, a small wand-like instrument is placed up against the eyelid or eyeball, sends sound waves through the eye, and picks up the echoes as they bounce off the organs. The echoes are converted into an image on a computer screen.

This test is especially useful for diagnosing eye melanomas because they look a certain way on ultrasound. Using this test, doctors can confirm a diagnosis of melanoma of the eye in most cases. This test can also show the location and the size of the tumor. If you have already been diagnosed with eye melanoma, an ultrasound of your abdomen may be done to look for tumors in the liver, which is a common site of spread of this cancer.

Ultrasound biomicroscopy (UBM): This is a special type of ultrasound that uses high-energy sound waves to create very detailed images of the front parts of the eye.

Optical coherence tomography (OCT)

This test is similar to an ultrasound, but it uses light waves instead of sound waves to create very detailed images of the back of the eye.
Fluorescein angiography

For this test, an orange fluorescent dye (fluorescein) is injected into the bloodstream through a vein in the arm. Pictures of the back of the eye are then taken using a special light that makes the dye fluoresce (glow). This lets the doctor see the blood vessels inside the eye. Although melanomas don’t have a special appearance with this test, some other eye problems do. Doctors can use this method to tell if something is not a melanoma.

Chest x-ray

If you have been diagnosed with eye melanoma, an x-ray of your chest may be done to see if the cancer has spread to your lungs.

Computed tomography (CT) scan

A CT scan combines many x-rays to make detailed cross-sectional images of parts of the body. This scan is sometimes used to see if a melanoma has spread outside of the eye into nearby structures. It may also be used to look for spread of the cancer to distant organs such as the liver.

Magnetic resonance imaging (MRI) scan

MRI scans are particularly useful for looking at eye tumors and spread of tumor outside the eye orbit in places like the liver. MRIs provide detailed images of soft tissues in the body, but use radio waves and strong magnets instead of x-rays.

Biopsy

For most types of cancer, the diagnosis is made by removing a small piece of the tumor and looking at it in the lab for cancer cells. This is known as a biopsy.

A biopsy is often not needed to diagnose eye melanomas because almost all cases can be accurately diagnosed by the eye exam and imaging tests. Sometimes, a biopsy may be useful to check for certain gene mutations (changes) that can predict outcomes (prognosis) as well as help choose targeted drugs for your cancer. Also, certain eye melanomas can spread for many years before they are diagnosed so doing a biopsy of a worrisome area early may be helpful.

If a biopsy is needed, it can be done either with sedation and local anesthesia (numbing
medicine) or while a person is under general anesthesia (in a deep sleep). Different types of biopsies can be done for eye melanoma depending on where it is located including:

- A FNA (fine needle aspiration): Using a thin needle to remove a small sample of aqueous humor (the liquid between the cornea and the lens)
- An incisional or excisional biopsy (cutting out either part of or all of the tumor)
- A fine needle biopsy of the tumor: Cells from the tumor are sucked up into a syringe through a small needle and examined in the lab.

Newer techniques help to lower the chances of tumor cells leaking and spreading along the needle path during these biopsies so the cancer doesn't spread within or outside the eye.

While most people with melanoma of the eye are treated without having a biopsy first, your doctor may recommend a biopsy depending on your specific situation. They can discuss the risks and benefits of the procedure they feel is best for you. Some doctors have started using biopsies to get a sample of the tumor for gene testing (DecisionDx-UM). They have found that certain patterns of genes in tumor cells are a good way to tell if an eye melanoma is likely to spread. Based on these gene patterns, a little more than half of eye melanomas are shown to be Class 1 (1A or 1B) tumors which have a low risk of spreading. The remaining eye melanomas fall into the Class 2 category, which have a very high risk of spreading. See "What's New in Eye Cancer Research?" for more information.

Liquid biopsy

A new type of biopsy called a liquid biopsy is being looked at more often. Instead of having to make a cut or put a needle into the eye, melanoma tumor cells can be collected from a blood sample. These cancer cells can then be tested for certain traits, including genetic changes, that can help predict how likely the cancer is to spread or come back after treatment. Liquid biopsies might help diagnose tumor spread earlier, or help the doctors know if treatment is working. This could be very helpful in people who did not have a biopsy of the tumor and want to preserve their vision. However, the equipment needed for this test is not readily available so this type of biopsy is not done routinely and is mainly done as part of a clinical trial.

Blood tests

Blood tests can't be used to diagnose melanoma of the eye, but they may be done once
a diagnosis is made.

Liver function tests

If you have been diagnosed with eye melanoma, your doctor may order blood tests to see how well your liver is working. Abnormal test results can sometimes be a sign that the cancer has spread to the liver.

Hyperlinks

5. https://www.cancer.org/content/cancer/en/treatment/understanding-your-diagnosis/tests/x-rays-and-other-radiographic-tests.html
7. https://www.cancer.org/content/cancer/en/treatment/understanding-your-diagnosis/tests/mri-for-cancer.html

References
Eye Cancer Stages

After someone is diagnosed with eye cancer, doctors will try to figure out if it has spread, and if so, how far. This process is called staging. The stage of a cancer describes how much cancer is in the body. It helps determine how serious the cancer is and how best to treat it. Doctors also use a cancer’s stage when talking about survival statistics.

How is the stage determined?

The cancer stage is determined from the results of eye exams, imaging tests (ultrasound, CT or MRI scan, etc.) and other tests. (See Tests for Eye Cancer.)
A staging system is a standard way for the cancer care team to describe how far a cancer has spread. The most common systems used to describe the stages of eye melanomas are the American Joint Committee on Cancer (AJCC) TNM system and the system used by the Collaborative Ocular Melanoma Study (COMS) group.

AJCC TNM staging system for melanoma of the eye

Most eye melanomas start in the uvea, which includes the iris, ciliary body, and choroid. (See [What Is Eye Cancer?](#)) The system below is for these **uveal melanomas**.

Less often, melanomas can start in other areas in or around the eye, some of which have their own staging systems (such as conjunctival melanoma). Talk to your doctor to learn more about your stage if you have a less common type of eye melanoma.

The system described below is the most recent AJCC system, effective January 2018.

The TNM system is based on 3 key pieces of information:

- The size and extent of the main **tumor (T)**: How large is the eye tumor? Has it invaded into nearby structures?
- The spread to nearby lymph **nodes (N)**: Has the cancer spread to the nearby lymph nodes around the ear or neck? Has the cancer spread to (not grown into) other parts of the eye?
- The spread (**metastasis**) to distant sites (**M**): Has the cancer spread to distant parts of the body? (The most common site of spread is the liver.)

Numbers or letters appear after T, N, and M to provide more details about each of these factors. Higher numbers or letters mean the cancer is more advanced.

The T categories for iris melanomas are different from the T categories for ciliary body and choroidal melanomas. But the N and M categories are the same for melanomas in all 3 parts of the uvea.

T categories for iris melanoma

TX: The primary tumor cannot be assessed; information not known.

T0: No evidence of a primary tumor.

T1: Tumor is only in the iris.
• **T1a**: The tumor is only in the iris and touches 1/4 or less of the iris.
• **T1b**: The tumor is only in the iris and touches more than 1/4 of the iris.
• **T1c**: The tumor is only in the iris and is causing an increase in the eye pressure (glaucoma).

T2: Tumor has grown into the ciliary body or choroid (or both).

• **T2a**: Tumor has grown into the ciliary body.
• **T2b**: Tumor has grown into the ciliary body and choroid.
• **T2c**: Tumor has grown into the ciliary body, choroid, or both, and it is causing glaucoma.

T3: Tumor has grown into the ciliary body and/or choroid and into the sclera.

T4: Tumor extends outside the eyeball.

• **T4a**: The part of the tumor that is outside the eyeball is 5 millimeters (mm) — about 1/5 of an inch — or less across.
• **T4b**: The part of the tumor that is outside the eyeball is greater than 5 mm (about 1/5 of an inch) across.

T categories for ciliary body and choroidal melanoma

Ciliary body and choroidal melanomas are divided into 4 main T categories (T1 to T4), based on the diameter (width) and the thickness of the tumor. T1 tumors are the smallest; T4 tumors are the largest. Each of these categories is then broken down further, based on how far the tumor has grown.

TX: The primary tumor cannot be assessed; information not known.

T0: No evidence of a primary tumor.

T1 tumors:

• **T1a**: The T1-size tumor is not growing into the ciliary body or growing outside the eyeball.
• **T1b**: The T1-size tumor is growing into the ciliary body.
• **T1c**: The T1-size tumor is not growing into the ciliary body but is growing outside of
the eyeball. The part of the tumor that is outside the eyeball is 5 mm (about 1/5 of an inch) or less across.

- **T1d:** The T1-size tumor is growing into the ciliary body and also outside of the eyeball. The part of the tumor that is outside the eyeball is 5 mm (about 1/5 of an inch) or less across.

T2 tumors:

- **T2a:** The T2-size tumor is not growing into the ciliary body or growing outside the eyeball.
- **T2b:** The T2-size tumor is growing into the ciliary body.
- **T2c:** The T2-size tumor is not growing into the ciliary body but is growing outside the eyeball. The part of the tumor that is outside the eyeball is 5 mm (about 1/5 of an inch) or less across.
- **T2d:** The T2-size tumor is growing into the ciliary body and also outside the eyeball. The part of the tumor that is outside the eyeball is 5 mm (about 1/5 of an inch) or less across.

T3 tumors:

- **T3a:** The T3-size tumor is not growing into the ciliary body and is not growing outside the eyeball.
- **T3b:** The T3-size tumor is growing into the ciliary body.
- **T3c:** The T3-size tumor is not growing into the ciliary body but is growing outside the eyeball. The part of the tumor that is outside the eyeball is 5 mm (about 1/5 of an inch) or less across.
- **T3d:** The T3-size tumor is growing into the ciliary body and also outside the eyeball. The part of the tumor that is outside the eyeball is 5 mm (about 1/5 of an inch) or less across.

T4 tumors:

- **T4a:** The T4-size tumor is not growing into the ciliary body or growing outside the eyeball.
- **T4b:** The T4-size tumor is growing into the ciliary body.
- **T4c:** The T4-size tumor is not growing into the ciliary body but is growing outside the eyeball. The part of the tumor that is outside the eyeball is 5 mm (about 1/5 of an inch) or less across.
an inch) or less across.

• **T4d**: The T4-size tumor is growing into the ciliary body and also outside the eyeball. The part of the tumor that is outside the eyeball is 5 mm (about 1/5 of an inch) or less across.

T4e: The tumor can be any size. It is growing outside the eyeball and the part of the tumor that is outside the eyeball is greater than 5 mm across.

N categories for iris, ciliary body, and choroidal melanomas

NX: Lymph nodes cannot be assessed.

N0: Cancer has not spread to nearby lymph nodes.

N1: Cancer has spread to nearby lymph nodes, or it has spread as small cancer deposits in other parts of the eye.

 • **N1a**: Cancer has spread to nearby lymph nodes.
 • **N1b**: Cancer has not spread to nearby lymph nodes, but it has spread as small cancer deposits in other parts of the eye.

M categories for iris, ciliary body, and choroidal melanomas

M0: Cancer has not spread to distant parts of the body.

M1: Cancer has spread to distant parts of the body.

 • **M1a**: The largest area of cancer spread is no more than 3 centimeters (cm) — a little over an inch — across.
 • **M1b**: The largest area of cancer spread is between 3.1 and 8 cm across (8 cm is a little over 3 inches).
 • **M1c**: The largest area of cancer spread is 8.1 cm or more across.

Stage grouping

To assign an overall stage, the T, N, and M categories are combined in a process called **stage grouping**. The stages are described by Roman numerals from I (the least...
advanced) to IV (the most advanced). Some stages are further divided with letters.

Stage I T1a, N0, M0
Stage IIA T1b to T1d, N0, M0 OR T2a, N0, M0
Stage IIB T2b or T3a, N0, M0
Stage IIIA T2c or T2d, N0, M0 OR T3b or T3c, N0, M0 OR T4a, N0, M0
Stage IIIB T3d, N0, M0 OR T4b or T4c, N0, M0
Stage IIIC T4d or T4e, N0, M0
Stage IV Any T, N1, M0 OR Any T, any N, M1

This staging system for uveal melanoma can be very complex. If you’re interested in learning more about it and how it might apply to your cancer, ask your doctor to explain it to you in a way you understand.

Collaborative Ocular Melanoma Study (COMS) staging of melanoma of the eye

The TNM system is very detailed, but in practice doctors may use the simpler staging system devised by the COMS group, which has done most of the clinical research on how to treat intraocular melanoma. This system divides eye melanomas into small, medium, and large:

- **Small:** Between 1 mm and 3 mm in height and between 5 mm and 16 mm across
- **Medium:** Between 3.1 mm and 8 mm in height and no more than 16 mm across
- **Large:** More than 8 mm in height or more than 16 mm across

Hyperlinks

Eye Cancer Survival Rates

Survival rates tell you what portion of people with the same type and stage of cancer are still alive a certain amount of time (usually 5 years) after they were diagnosed. They can’t tell you how long you will live, but they may help give you a better understanding about how likely it is that your treatment will be successful. Some people will want to know the survival rates for their cancer, and some people won’t. If you don’t want to know, you don’t have to.

What is a 5-year survival rate?

Statistics on the outlook for a certain type of cancer are often given as 5-year survival rates. The 5-year survival rate is the percentage of people who live at least 5 years after being diagnosed with cancer. For example, a 5-year survival rate of 90% means that an estimated 90 out of 100 people who have that cancer are still alive 5 years after being diagnosed. Keep in mind, however, that many of these people live much longer than 5 years after diagnosis.

Relative survival rates are a more accurate way to estimate the effect of cancer on survival. These rates compare people with cancer to people in the overall population. For example, if the 5-year relative survival rate for a specific type of cancer is 90%, it means that people who have that cancer are, on average, about 90% as likely as people who don’t have that cancer to live for at least 5 years after being diagnosed.

But remember, all survival rates are estimates – your outlook can vary based on factors specific to you.
Cancer survival rates don’t tell the whole story

Survival rates are often based on previous outcomes of large numbers of people who had the disease, but they can’t predict what will happen in any particular person’s case. There are a number of limitations to remember:

- The numbers below are among the most current available. But to get 5-year survival rates, doctors have to look at people who were treated at least 5 years ago. As treatments are improving over time, people who are now being diagnosed with eye cancer may have a better outlook than these statistics show.
- These statistics are based on when the cancer was first diagnosed. They do not apply to cancers that later come back or spread, for example.
- The outlook for people with eye cancer varies by the type and stage (extent) – in general, the survival rates are higher for people with earlier stage cancers. But other factors can also affect a person’s outlook (see below). The outlook for each person is specific to their circumstances.

Your doctor can tell you how these numbers may apply to you, as he or she is familiar with your situation.

Survival rates for eye melanoma

The numbers below come from the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) database, and are based on about 7,500 patients who were diagnosed with uveal eye melanoma between 1973 and 2012.

Overall, about 3 out of 4 people with eye melanoma survive for at least 5 years. Survival rates tend to be better for earlier-stage than for later-stage cancers, but accurate survival rates for eye melanomas based on a specific stage are hard to determine because these cancers are fairly rare.

When the cancer is confined to the eye, the 5-year relative survival rate is about 80%. For people with eye melanomas that have spread to distant parts of the body, the 5-year relative survival rate is about 15%.

Hyperlinks

Questions to Ask About Eye Cancer

It’s important to have honest, open discussions with your cancer team. They want to answer all your questions, so that you can make informed treatment and life decisions. For instance, consider these questions:

When you’re told you have eye cancer

• What kind of eye cancer\(^1\) do I have?
• Has my cancer spread beyond the eye?
• What is the stage\(^2\) (extent) of my cancer, and what does that mean?
• Will I need any other tests before we can decide on treatment?
• Will I need to see any other types of doctors?
• Are there other factors that could affect my treatment options?
• If I’m concerned about the costs and insurance coverage for my diagnosis and treatment, who can help me?
When deciding on a treatment plan

- How much experience do you have treating this type of cancer?
- Should I get a second opinion? Can you recommend a doctor or cancer center?
- What treatment choices do I have? What do you recommend and why?
- What is the goal of treatment (cure, prolonging life, relieving symptoms, etc.)?
- What are the risks or side effects to the treatments you suggest? What is the risk of losing vision in the eye from the different treatments?
- What should I do to be ready for treatment?
- How long will treatment last? What will it be like? Where will it be done?
- How will treatment affect my daily activities?
- What are the chances my cancer will come back (recur) after treatment?
- What would we do if the treatment doesn’t work or if the cancer recurs?

During treatment

Once treatment begins, you’ll need to know what to expect and what to look for. Not all of these questions may apply to you, but getting answers to the ones that do may be helpful.

- How will we know if the treatment is working?
- Is there anything I can do to help manage side effects?
- What symptoms or side effects should I tell you about right away?
- How can I reach you on nights, holidays, or weekends?
- Are there any limits on what I can do?
- Can you suggest a mental health professional I can see if I start to feel overwhelmed, depressed, or distressed?

After treatment

- What type of follow-up might I need after treatment?
- What symptoms should I watch for?
- How will we know if the eye cancer has come back? What would my options be if that happens?

Along with these sample questions, be sure to write down some of your own. For
example, you might want more information about recovery times so you can plan your work or activity schedule. You might also want to ask about clinical trials6 for which you may qualify.

Keep in mind that doctors aren’t the only ones who can give you information. Other health care professionals, such as nurses and social workers, may be able to answer some of your questions. You can find out more about speaking with your health care team in The Doctor-Patient Relationship7.

Hyperlinks

Last Medical Review: November 30, 2018 Last Revised: November 30, 2018

Written by

The American Cancer Society medical and editorial content team

Our team is made up of doctors and master’s-prepared nurses with deep knowledge of cancer care as well as journalists, editors, and translators with extensive experience in medical writing.

American Cancer Society medical information is copyrighted material. For reprint requests, please see our Content Usage Policy