About Gallbladder Cancer

Overview and Types

If you've been diagnosed with gallbladder cancer or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start.

- [What Is Gallbladder Cancer?](#)

Research and Statistics

See the latest estimates for new cases of gallbladder cancer and deaths in the US and what research is currently being done.

- [Key Statistics for Gallbladder Cancer](#)
- [What's New in Gallbladder Cancer Research?](#)

What Is Gallbladder Cancer?

Cancer starts when cells in the body start to grow out of control. Cells in nearly any part of the body can become cancer, and can spread to other parts. To learn more about how cancers start and spread, see [What Is Cancer?](#)

Gallbladder cancer starts in the gallbladder. To understand this cancer, it helps to know about the gallbladder and what it does.

About the gallbladder

The gallbladder is a small, pear-shaped organ under the liver. Both the liver and the gallbladder are behind the right lower ribs. In adults, the gallbladder is usually about 3 to 4 inches long and normally no wider than an inch.
The gallbladder concentrates and stores bile, a fluid made in the liver. Bile helps digest the fats in foods as they pass through the small intestine. Bile is made by the liver and is either sent into ducts that carry it to the small intestine, or stored in the gallbladder and released later.

When food (especially fatty food) is being digested, the gallbladder squeezes and sends bile through a small tube called the **cystic duct**. The cystic duct joins up with the common hepatic duct (which comes from the liver) to form the **common bile duct**. The common bile duct joins with the main duct from the pancreas (the **pancreatic duct**) to empty into the first part of the small intestine (the duodenum) at the **ampulla of Vater**.
The gallbladder helps digest food, but you don't need it to live. Many people have their gallbladders removed and go on to live normal lives.

Types of gallbladder cancers

Gallbladder cancers rare and nearly all of them are adenocarcinomas. An adenocarcinoma is a cancer that starts in gland-like cells that line many surfaces of the body, including the inside the digestive system.

Papillary adenocarcinoma or just papillary cancer is a rare type of gallbladder adenocarcinoma that deserves special mention. The cells in these gallbladder cancers are arranged in finger-like projections. In general, papillary cancers are less likely to spread into the liver or nearby lymph nodes. They tend to have a better prognosis (outlook) than most other kinds of gallbladder adenocarcinomas.

Other types of cancer can start in the gallbladder, such as adenosquamous carcinomas, squamous cell carcinomas, and carcinosarcomas, but these are very rare.

- **References**

National Cancer Institute. Gallbladder Cancer Symptoms, Tests, Prognosis, and Stages
Key Statistics for Gallbladder Cancer

The American Cancer Society’s estimates for cancer of the gallbladder and nearby large bile ducts in the United States for 2018 are:

- About 12,190 new cases diagnosed: 5,450 in men and 6,740 in women
- About 3,790 deaths from these cancers: 1,530 in men and 2,260 in women

Of these new cases, about 4 in 10 will be gallbladder cancers.

Gallbladder cancer is not usually found until it has become advanced and causes symptoms. Only about 1 of 5 gallbladder cancers is found in the early stages, when the cancer has not yet spread outside the gallbladder.

The chances of survival for patients with gallbladder cancer depend to a large extent on how advanced it is when it's found. For more on this, see Survival statistics for gallbladder cancer by stage.

Visit the American Cancer Society’s Cancer Statistics Center for more key statistics.
What's New in Gallbladder Cancer Research?

Because gallbladder cancer is rare, it's been hard to study it well. Most experts agree that treatment in a clinical trial should be considered for any stage of gallbladder cancer. This way people can get the best treatment available now and may also get the treatments that are thought to be even better.

Gallbladder cancer research is being done in many university hospitals, medical centers, and other institutions around the world. Each year, scientists find out more about what causes the disease, how to prevent it, and how to better treat it. The new and promising treatments discussed here tend to only be available in clinical trials.

Diagnosis
Because gallbladder cancer is often found after surgery to remove the gallbladder for other problems (like gallstones), doctors are looking for ways to know whether gallbladder problems are cancer before surgery is done. For instance, studies are looking at how to better use imaging tests, like ultrasound and CT scans, to more accurately identify and diagnose changes in the gallbladder. Identifying proteins that are linked to gallbladder inflammation is another area of research. Early research has suggested that high levels of certain proteins in the blood may help show which people have gallstones and which have cancer. This could even be used as a screening test in the future, but a lot more research is needed.

Radiation therapy

Researchers are looking for better ways to use radiation therapy, as well as how to best use it along with other treatments, like surgery and chemotherapy. Using certain chemo drugs and radiation together has been found to work better than either treatment alone. This is called chemoradiation. The timing of these 2 treatments, as well as which drugs work best with radiation to treat gallbladder cancer are of great research interest.

Doctors are also studying other ways to use radiation therapy. For instance, some researchers are testing radioactive stents that are put inside bile ducts. They might help shrink tumors and keep the ducts open longer than standard stents.

Chemotherapy

In general, chemotherapy (chemo) has been found to be of limited use against gallbladder cancer, but new drugs and new combinations of drugs are being tested. Studies are also looking for better ways to combine chemo with other treatments, like surgery and radiation.

There’s a lot of research interest in combining chemotherapy and targeted therapy.

Targeted therapy

These drugs work differently from standard chemo drugs. They can target specific changes in cancer cells that help them grow and survive. They can also change certain proteins made by the cancer cells to cause the cells to die. Targeted drugs can work with the immune system to help it find and kill cancer cells, too. Many of these drugs are being tested for use in treating gallbladder cancer.
Many other kinds of cancers are already treated with targeted therapy. As researchers learn more about the changes in gallbladder cells that cause them to become cancer, they’re looking to use targeted drugs that focus on killing the cells with these changes.

For instance, some of these drugs target tumor blood vessels. Gallbladder tumors need new blood vessels to grow beyond a certain size. Bevacizumab (Avastin®), erlotinib (Tarceva®), and regorafenib (Stivarga®) are examples of drugs that target blood vessel growth and are being studied against gallbladder cancer.

Other drugs have different targets. For example, EGFR, a protein that helps cells grow, is found in high amounts on some cancer cells. Drugs that target EGFR have shown some benefit against many types of cancer. Some of these drugs, such as cetuximab (Erbitux®) and panitumumab (Vectibix®) are now being studied for use in people with gallbladder cancer, often in combination with chemotherapy or other targeted drugs.

Other types of targeted therapy, such as MEK inhibitors (like trametinib [Mekinist®] and selumetinib), and anti-PD1 drugs (like pembrolizumab [Keytruda®]), are also being studied for use against gallbladder cancer.

Again, this is an active area of research, but a lot more research is needed to find out if targeted therapy works and which drugs work best in treating gallbladder cancer.

- **References**

See all references for Gallbladder Cancer

Last Medical Review: July 12, 2018 Last Revised: July 12, 2018