Kidney Cancer Early Detection, Diagnosis, and Staging

Detection and Diagnosis

Catching cancer early often allows for more treatment options. Some early cancers may have signs and symptoms that can be noticed, but that is not always the case.

- Can Kidney Cancer Be Found Early?
- Kidney Cancer Signs and Symptoms
- Tests for Kidney Cancer

Stages and Outlook (Prognosis)

After a cancer diagnosis, staging provides important information about the extent of cancer in the body and anticipated response to treatment.

- Kidney Cancer Stages
- Survival Rates for Kidney Cancer

Questions to Ask About Kidney Cancer

Here are some questions you can ask your cancer care team to help you better understand your cancer diagnosis and treatment options.

- What Should You Ask Your Doctor About Kidney Cancer?
Can Kidney Cancer Be Found Early?

Many kidney cancers are found fairly early, while they are still confined to the kidney, but others are found at a more advanced stage. There are a few reasons for this:

- These cancers can sometimes grow quite large without causing any pain or other problems.
- Because the kidneys are deep inside the body, small kidney tumors cannot be seen or felt during a physical exam.
- There are no recommended screening tests for kidney cancer in people who are not at increased risk. This is because no test has been shown to lower the overall risk of dying from kidney cancer.

For people at average risk of kidney cancer

Some tests can find some kidney cancers early, but none of these is recommended to screen for kidney cancer in people at average risk.

A routine urine test (urinalysis), which is sometimes part of a complete medical checkup, may find small amounts of blood in the urine of some people with early kidney cancer. But many things other than kidney cancer cause blood in the urine, including urinary tract infections, bladder infections, bladder cancer, and benign (non-cancerous) kidney conditions such as kidney stones. Sometimes people with kidney cancer do not have blood in their urine until the cancer is quite large and might have spread to other parts of the body.

Imaging tests\(^1\) such as computed tomography (CT) scans and magnetic resonance imaging (MRI) scans can often find small kidney cancers, but these tests are expensive. Ultrasound is less expensive and can also detect some early kidney cancers. One problem with these tests is that they can’t always tell benign tumors from small renal cell carcinomas.

Often, kidney cancers are found incidentally (by accident) during imaging tests for some other illness such as gallbladder disease. These cancers usually are causing no pain or other symptoms when they are found. The survival rate for these kidney cancers is very high because they are usually found at a very early stage.

For people at increased risk of kidney cancer
People who have certain *inherited conditions*\(^2\), such as von Hippel-Lindau disease, have a higher risk of kidney cancer. Doctors often recommend that these people get regular imaging tests such as CT, MRI, or ultrasound scans to look for kidney tumors. Kidney cancers that are found early with these tests can often be cured.

It is important to tell your doctor if any of your family members (blood relatives) has or had kidney cancer, especially at a younger age, or if they have been diagnosed with an inherited condition linked to this cancer, such as von Hippel-Lindau disease. Your doctor may recommend that you consider genetic counseling and testing to see if you have the condition.

Before having genetic tests, it’s important to talk with a genetic counselor so that you understand what the tests can and can’t tell you, and what any results would mean. Genetic tests look for the gene mutations that cause these conditions in your DNA. They are used to diagnose these inherited conditions, not kidney cancer itself. Your risk may be increased if you have one of these conditions, but it does not mean that you have (or definitely will get) kidney cancer. For more information on genetic testing, see [Genetics and Cancer]\(^3\).

Some doctors also recommend that people with kidney diseases treated by long-term dialysis or those who have had radiation to their kidney in the past have regular tests to look for kidney cancer.

**Hyperlinks**


**References**


Kidney Cancer Signs and Symptoms

Early kidney cancers do not usually cause any signs or symptoms, but larger ones might. Some possible signs and symptoms of kidney cancer include:

- Blood in the urine (hematuria)
- Low back pain on one side (not caused by injury)
- A mass (lump) on the side or lower back
- Fatigue (tiredness)
- Loss of appetite
• Weight loss not caused by dieting
• Fever that is not caused by an infection and that doesn’t go away
• Anemia (low red blood cell counts)

These signs and symptoms can be caused by kidney cancer (or another type of cancer), but more often they are caused by other, benign, diseases. For example, blood in the urine is most often caused by a bladder or urinary tract infection or a kidney stone. Still, if you have any of these symptoms, see a doctor so that the cause can be found and treated, if needed.

References


Last Medical Review: August 1, 2017 Last Revised: August 1, 2017

Tests for Kidney Cancer
Kidney cancer might be found because of signs or symptoms a person is having, or it might be found because of lab tests or imaging tests a person is getting for another reason. If cancer is suspected, tests will be needed to confirm the diagnosis.

**Medical history and physical exam**

If you have any signs or symptoms that suggest you might have kidney cancer, your doctor will want to take a complete medical history to check for risk factors and to learn more about your symptoms.

A physical exam can provide information about signs of kidney cancer and other health problems. For example, the doctor may be able to feel an abnormal mass (lump) when he or she examines your abdomen (belly).

If symptoms or the results of the physical exam suggest you might have kidney cancer, more tests will probably be done. These might include lab tests and imaging tests.

**Blood tests**

Lab tests cannot show for sure if a person has kidney cancer, but they can sometimes give the first hint that there may be a kidney problem. If cancer has already been diagnosed, they are also done to get a sense of a person’s overall health and to help tell if the cancer might have spread to other areas. They also can help show if a person is healthy enough to have an operation.

**Urinalysis (urine testing):** This test may be done if your doctor suspects a kidney problem.

Microscopic and chemical tests are done on a urine sample to look for small amounts of blood and other substances not seen with the naked eye. About half of all patients with renal cell cancer will have blood in their urine. If the patient has transitional cell carcinoma (in the renal pelvis, the ureter, or the bladder), sometimes a special exam of the urine sample (called *urine cytology*) in the lab will show actual cancer cells in the urine.

**Complete blood count (CBC):** This is a test that measures the amounts of different cells in the blood. This test result is often abnormal in people with renal cell cancer. Anemia (having too few red blood cells) is very common. Less often, a person may have too many red blood cells (called *polycythemia*) because the kidney cancer cells make a hormone (erythropoietin) that causes the bone marrow to make more red blood cells. Blood counts are also important to make sure a person is healthy enough for
surgery\(^1\).

**Blood chemistry tests:** These tests are usually done in people who might have kidney cancer, because the cancer can affect the levels of certain chemicals in the blood. For example, high levels of liver enzymes are sometimes found. High blood calcium levels may indicate that cancer has spread to the bones, and may therefore prompt a doctor to order a bone scan. Blood chemistry tests also look at kidney function, which is especially important if certain imaging tests or if surgery is planned.

### Imaging tests to look for kidney cancer

Imaging tests use x-rays, magnetic fields, sound waves, or radioactive substances to create pictures of the inside of your body. Imaging tests can be done for a number of reasons, such as:

- To look at suspicious areas that might be cancer
- To learn how far cancer has spread
- To help determine if treatment is working

Unlike most other cancers, doctors can often diagnose kidney cancer with fair certainty based on imaging tests without doing a biopsy (removing a sample of the tumor to be looked at under a microscope). In some patients, however, a biopsy may be needed.

#### Computed tomography (CT) scan

The **CT scan\(^2\)** uses x-rays to produce detailed cross-sectional images of your body. It is one of the most useful tests for finding and looking at a tumor in your kidney. It can provide precise information about the size, shape, and location of a tumor. It is also useful in checking to see if a cancer has spread to nearby lymph nodes or to organs and tissues outside the kidney. If a kidney biopsy is needed, this test can also be used to guide a biopsy needle into the mass (lump) to obtain a sample.

When a CT is done to look at the kidneys, an IV (intravenous) contrast dye is often needed to make certain areas stand out better on the scan. This CT contrast can damage the kidneys. This happens more often in patients whose kidneys are not working well in the first place. Because of this, your kidney function will be checked with a blood test before you get IV contrast.

#### Magnetic resonance imaging (MRI) scan
MRI scans are used less often than CT scans in people with kidney cancer. They may be done in cases where CT scans aren’t practical, such as if a person can’t have the CT contrast dye because they have an allergy to it or they don’t have good kidney function. MRI scans may also be done if there’s a chance that the cancer has grown into major blood vessels in the abdomen (like the inferior vena cava), because they provide a better picture of blood vessels than CT scans. Finally, they may be used to look at abnormal areas in the brain and spinal cord that might be due to cancer spread.

Ultrasound

Ultrasound can help find a kidney mass and show if it is solid or filled with fluid (kidney tumors are more likely to be solid). Different echo patterns also can help doctors tell some types of benign and malignant kidney tumors from one another.

If a kidney biopsy is needed, this test can also be used to guide a biopsy needle into the mass to obtain a sample.

Positron emission tomography (PET) scan

A PET scan uses a form of radioactive sugar that is put into the blood. Body cells take in different amounts of the sugar, depending on how fast they are growing. Cancer cells, which grow quickly, are more likely to take up larger amounts of the sugar than normal cells. A special camera is used to create a picture of areas of radioactivity in the body. The picture from a PET scan is not as detailed as a CT or MRI scan, but it provides helpful information about whether abnormal areas seen on these other tests are likely to be cancer or not. This scan can be useful in seeing if the cancer has spread to lymph nodes near the kidney. PET scans can also be useful if your doctor thinks the cancer may have spread but doesn’t know where.

Special machines can perform both a PET and CT scan at the same time (PET/CT scan). This lets the doctor compare areas of higher radioactivity (suggesting an area of cancer) on the PET scan with the more detailed picture of that area on the CT.

Still, PET and PET/CT scans are not a standard part of the work-up for kidney cancers.

Intravenous pyelogram

An intravenous pyelogram (IVP) is an x-ray of the urinary system taken after a special dye is injected into a vein. The kidneys remove the dye from the bloodstream and it then concentrates in the ureters and bladder. An IVP can help find abnormalities of the renal pelvis and ureter, such as cancer, but this test is not often used when kidney cancer is
suspected.

**Angiography**

Angiography is an x-ray test for looking at blood vessels. A contrast dye is injected into the renal artery, and the dye outlines the blood vessels. X-rays are taken to identify and map the blood vessels that supply a kidney tumor. This type of contrast dye though, is not the same as the one used for an IVP.

This test can help in planning surgery for some patients. Angiography can also help diagnose renal cancers since the blood vessels usually have a special appearance with this test.

Angiography can often be done as a part of a CT or MRI scan, instead of as a separate x-ray test. This means less contrast dye is used, which is helpful since the dye can damage kidney function further if it is given to people whose kidneys aren’t working well.

**Chest x-ray**

An [x-ray](#) may be done after kidney cancer has been diagnosed to see if cancer has spread to the lungs.

**Bone scan**

A bone scan can help show if a cancer has spread to your bones. It might be done if there is reason to think the cancer might have spread to the bones (because of symptoms such as bone pain or blood test results showing an increased calcium level). PET scans can usually show the spread of cancer to bones as well, so if you’ve had a PET scan you might not need a bone scan.

**Kidney biopsy**

Unlike with most other types of cancer, biopsies are not often used to diagnose kidney tumors. Imaging tests usually provide enough information for a surgeon to decide if an operation is needed. The diagnosis is then confirmed when part of the kidney that was removed is looked at in the lab.

However, a biopsy is sometimes done to get a small sample of tissue from an area that may be cancer when the imaging tests are not clear enough to permit surgery. Biopsy may also be done to confirm cancer if a person might not be treated with surgery, such
as with small tumors that will be watched and not treated\(^7\), or when other treatments\(^8\) are being considered.

Fine needle aspiration (FNA) and needle core biopsy are 2 types of kidney biopsies that may be done.

In cases where the doctors think kidney cancer might have spread to other sites, they may take a biopsy of the metastatic site instead of the kidney.

**Biopsy results**

The biopsy samples are sent to a lab, where they are looked at by a pathologist, a doctor who specializes in diagnosing diseases with lab tests. If kidney cancer is found, an important feature that is evaluated is the grade, specifically called Fuhrman grade.

The Fuhrman grade is found by looking at kidney cancer cells (taken during a biopsy or during surgery) in a lab. Many doctors use it to describe how quickly the cancer is likely to grow and spread. The grade is based on how closely the cancer cells look like those of normal kidney cells. Renal cell cancers are usually graded on a scale of 1 through 4. Grade 1 renal cell cancers have cells that look a lot like normal kidney cells. These cancers usually grow and spread slowly and tend to have a good prognosis (outlook). At the other extreme, grade 4 renal cell cancer looks quite different from normal kidney cells. These cancers have a worse prognosis.

Although the cell type and grade can sometimes help predict prognosis (outlook), the cancer’s stage is by far the best predictor of survival. The stage describes the cancer’s size and how far it has spread beyond the kidney. Staging is explained in [Kidney Cancer Stages](#).

**Hyperlinks**

3. [www.cancer.org/treatment/understanding-your-diagnosis/tests/mri-for-cancer.html](http://www.cancer.org/treatment/understanding-your-diagnosis/tests/mri-for-cancer.html)
5. [www.cancer.org/treatment/understanding-your-diagnosis/tests/nuclear-medicine-scans-for-cancer.html](http://www.cancer.org/treatment/understanding-your-diagnosis/tests/nuclear-medicine-scans-for-cancer.html)
Kidney Cancer Stages

After someone is diagnosed with kidney cancer, doctors will try to figure out whether it has spread, and if so, how far. This process is called staging. The stage of a cancer describes the extent of the cancer in the body. It helps determine how serious the cancer is and how best to treat it. The stage is one of the most important factors in deciding how to treat the cancer and determining how successful treatment might be.

To determine the cancer’s stage after a kidney cancer diagnosis, doctors try to answer these questions:

References


Last Medical Review: August 1, 2017 Last Revised: August 1, 2017
- How large has the cancer grown in the kidney?
- Has the cancer reached nearby structures, such as major blood vessels?
- Has the cancer spread to the nearby lymph nodes or to distant organs?

The stage of kidney cancer is based on the results of the physical exam, imaging tests (CT scan, chest x-ray, PET scan, etc.), and sometimes biopsies which are described in Tests for Kidney Cancer

**Understanding your kidney cancer stage**

After looking at your test results, your doctor will tell you the stage of your cancer. The staging system most often used for kidney cancer is the American Joint Committee on Cancer (AJCC) **TNM** system. The TNM system is based on 3 key pieces of information:

- The size of the main (primary) tumor (**T**) and whether it has grown into nearby areas.
- If the cancer has spread to nearby (regional) lymph nodes (**N**). Lymph nodes are small bean-shaped collections of immune system cells to which cancers often spread first.
- If the cancer has spread (metastasized) to other organs (**M**). Kidney cancer can spread almost anywhere in the body, but common sites of spread are the bones, brain, and lungs.

Numbers or letters after T, N, and M provide more details about each of these factors. Higher numbers mean the cancer is more advanced. Once a person’s T, N, and M categories have been determined, usually after surgery, this information is combined in a process called **stage grouping** to assign an overall stage.

The earliest stage cancers are called stage 0 (carcinoma in situ), and then range from stages I (1) through IV (4). Some of the stages have sub-stages with the letters A, B, and C. The letter X means “cannot be assessed because the information is not available.”

As a rule, the lower the number, the less the cancer has spread. A higher number, such as stage IV, means a more advanced cancer. And within a stage, an earlier letter means a lower stage. Cancers with similar stages tend to have a similar outlook and are often treated in much the same way. Patients with lower stage numbers tend to have a better prognosis.
The staging system in the table below uses the *pathologic stage*. It is based on the results of physical exam, biopsy, imaging tests, and the results of surgery. This is likely to be more accurate than *clinical staging*, which only considers the tests done *before* surgery.

Kidney cancer staging can be complex. If you have any questions about your stage, please ask your doctor to explain it to you in a way you understand. (An explanation of the TNM system also follows the stage table below.)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Stage grouping</th>
<th>Stage description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>T1, N0, M0</td>
<td>The tumor is 7 cm across or smaller and is only in the kidney (T1). There is no spread to lymph nodes (N0) or distant organs (M0).</td>
</tr>
<tr>
<td>II</td>
<td>T2, N0, M0</td>
<td>The tumor is larger than 7 cm across but is still only in the kidney (T2). There is no spread to lymph nodes (N0) or distant organs (M0).</td>
</tr>
<tr>
<td>III</td>
<td>T3, N0, M0</td>
<td>The tumor is growing into a major vein (like the renal vein or the vena cava) or into tissue around the kidney, but it is not growing into the adrenal gland or beyond Gerota’s fascia (T3). There is no spread to lymph nodes (N0) or distant organs (M0). OR T1 to T3, N1, M0</td>
</tr>
<tr>
<td>IV</td>
<td>T4, Any N, M0</td>
<td>The main tumor is growing beyond Gerota’s fascia and may be growing into the adrenal gland on top of the kidney (T4). It may or may not have spread to nearby lymph nodes (any N). It has not spread to distant lymph nodes or other organs (M0). OR Any T, Any N, M1</td>
</tr>
</tbody>
</table>
Explaining the TNM system

T categories for kidney cancer

TX: The primary tumor cannot be assessed (information not available).

T0: No evidence of a primary tumor.

T1: The tumor is only in the kidney and is no larger than 7 centimeters (cm), or a little less than 3 inches, across.

T1a: The tumor is 4 cm (about 1½ inches) across or smaller and is only in the kidney.

T1b: The tumor is larger than 4 cm but not larger than 7 cm across and is only in the kidney.

T2: The tumor is larger than 7 cm across but is still only in the kidney.

T2a: The tumor is more than 7 cm but not more than 10 cm (about 4 inches) across and is only in the kidney.

T2b: The tumor is more than 10 cm across and is only in the kidney.

T3: The tumor is growing into a major vein or into tissue around the kidney, but it is not growing into the adrenal gland (on top of the kidney) or beyond Gerota’s fascia (the fibrous layer that surrounds the kidney and nearby fatty tissue).

T3a: The tumor is growing into the main vein leading out of the kidney (renal vein) or into fatty tissue around the kidney.

T3b: The tumor is growing into the part of the large vein leading into the heart (vena cava) that is within the abdomen.

T3c: The tumor has grown into the part of the vena cava that is within the chest or it is growing into the wall of the vena cava.

T4: The tumor has spread beyond Gerota’s fascia (the fibrous layer that surrounds the kidney and nearby fatty tissue). The tumor may have grown into the adrenal gland (on top of the kidney).

N categories for kidney cancer
NX: Regional (nearby) lymph nodes cannot be assessed (information not available).

N0: No spread to nearby lymph nodes.

N1: Tumor has spread to nearby lymph nodes.

**M categories for kidney cancer**

M0: There is no spread to distant lymph nodes or other organs.

M1: Distant metastasis is present; includes spread to distant lymph nodes and/or to other organs. Kidney cancer most often spreads to the lungs, bones, liver, or brain.

**Other staging and prognostic systems**

The TNM staging system is useful, but some doctors have pointed out that there are factors other than the extent of the cancer that should be considered when determining prognosis and treatment.

**University of California Los Angeles (UCLA) Integrated Staging System**

This is a more complex system that came out in 2001. It was meant to improve upon the AJCC staging that was then in place. Along with the stage of the cancer, it takes into account a person’s overall health and the Fuhrman grade of the tumor. These factors are combined to put people into low-, intermediate-, and high-risk groups. Ask your doctor if he or she uses this system and how it might apply to you.

**Survival predictors**

The stage of the cancer is an important predictor of survival, but other factors are also important. For example, researchers have linked certain factors with shorter survival times in people with kidney cancer that has spread outside the kidney. These include:

- High blood lactate dehydrogenase (LDH) level
- High blood calcium level
- Anemia (low red blood cell count)
- Cancer spread to 2 or more distant sites
- Less than a year from diagnosis to the need for systemic treatment (targeted therapy, immunotherapy, or chemotherapy)
- Poor performance status (a measure of how well a person can do normal daily
activities)

People with none of the above factors are considered to have a good prognosis; 1 or 2 factors are considered intermediate prognosis, and 3 or more of these factors are considered to have a poor prognosis and may be less likely to benefit from certain treatments.

Hyperlinks


References


Last Medical Review: August 1, 2017 Last Revised: August 1, 2017
Survival Rates for Kidney Cancer

Survival rates can give you an idea of what percentage of people with the same type and stage of cancer are still alive a certain amount of time (usually 5 years) after they were diagnosed. They can’t tell you how long you will live, but they may help give you a better understanding of how likely it is that your treatment will be successful.

Keep in mind that survival rates are estimates and are often based on previous outcomes of large numbers of people who had a specific cancer, but they can’t predict what will happen in any particular person’s case. These statistics can be confusing and may lead you to have more questions. Talk with your doctor about how these numbers may apply to you, as he or she is familiar with your situation.

What is a 5-year relative survival rate?

A relative survival rate compares people with the same type and stage of cancer to people in the overall population. For example, if the 5-year relative survival rate for a specific stage of kidney cancer is 80%, it means that people who have that cancer are, on average, about 80% as likely as people who don’t have that cancer to live for at least 5 years after being diagnosed.

Where do these numbers come from?

The American Cancer Society relies on information from the SEER* database, maintained by the National Cancer Institute (NCI), to provide survival statistics for different types of cancer.

The SEER database tracks 5-year relative survival rates for kidney cancer in the United States, based on how far the cancer has spread. The SEER database, however, does not group cancers by AJCC TNM stages (stage 1, stage 2, stage 3, etc.). Instead, it groups cancers into localized, regional, and distant stages:

- **Localized:** There is no sign that the cancer has spread outside of the kidney.
- **Regional:** The cancer has spread outside the kidney to nearby structures or lymph nodes.
- **Distant:** Includes cancers that have spread to distant parts of the body such as the lungs, brain, or bones.
5-year relative survival rates for kidney cancer

These numbers are based on people diagnosed with cancers of the kidney (or renal pelvis) between 2009 and 2015.

<table>
<thead>
<tr>
<th>SEER stage</th>
<th>5-year relative survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localized</td>
<td>93%</td>
</tr>
<tr>
<td>Regional</td>
<td>70%</td>
</tr>
<tr>
<td>Distant</td>
<td>12%</td>
</tr>
<tr>
<td>All SEER stages</td>
<td>75%</td>
</tr>
</tbody>
</table>

Understanding the numbers

- **People now being diagnosed with kidney cancer may have a better outlook than these numbers show.** Treatments improve over time, and these numbers are based on people who were diagnosed and treated at least five years earlier.
- **These numbers apply only to the stage of the cancer when it is first diagnosed.** They do not apply later on if the cancer grows, spreads, or comes back after treatment.
- **These numbers don’t take everything into account.** Survival rates are grouped based on how far the cancer has spread, but your age, overall health, how well the cancer responds to treatment, and other factors will also affect your outlook.

*SEER = Surveillance, Epidemiology, and End Results

References


What Should You Ask Your Doctor About Kidney Cancer?

It’s important to have honest, open discussions with your cancer care team. They want to answer all your questions, so that you can make informed treatment and life decisions. For instance, consider these questions:

When you’re told you have kidney cancer

- What type of kidney cancer do I have?
- Where is the cancer located?
- Has the cancer spread beyond where it started?
- What is the cancer’s stage (extent), and what does that mean?
- Will I need other tests before we can decide on treatment?
- Do I need to see any other doctors or health professionals?
- If I’m concerned about the costs and insurance coverage for my diagnosis and treatment, who can help me?

When deciding on a treatment plan

- What are my treatment options?
- What do you recommend and why?
- How much experience do you have treating this type of cancer?
- Should I get a second opinion? How do I do that? Can you recommend someone?
- What would the goal of the treatment be?
- How quickly do we need to decide on treatment? What should I do to be ready for
treatment?
- How long will treatment last? What will it be like? Where will it be done?
- What risks or side effects are there to the treatments you suggest? Are there things I can do to reduce these side effects?
- How might treatment affect my daily activities? Can I still work full time?
- What are the chances the cancer will recur (come back) with these treatment plans?
- What will we do if the treatment doesn’t work or if the cancer recurs?
- What if I have trouble getting to and from my treatments because of transportation problems?

**During treatment**

Once treatment begins, you’ll need to know what to expect and what to look for. Not all of these questions may apply to you, but asking the ones that do may be helpful.

- How will we know if the treatment is working?
- Is there anything I can do to help manage side effects?
- What symptoms or side effects should I tell you about right away?
- How can I reach you on nights, holidays, or weekends?
- Do I need to change what I eat during treatment?
- Are there any limits on what I can do?
- Can I exercise during treatment? If so, what kind of exercise should I do, and how often?
- Can you suggest a mental health professional I can see if I start to feel overwhelmed, depressed, or distressed?
- What if I need some social support during treatment because my family lives far away?

**After treatment**

- Do I need a special diet after treatment?
- Are there any limits on what I can do?
- What other symptoms should I watch for?
- What kind of exercise should I do now?
- What type of follow-up will I need after treatment?
• How often will I need to have follow-up exams and imaging tests?
• Will I need any blood tests?
• How will we know if the cancer has come back? What should I watch for?

Along with these sample questions, be sure to write down some of your own. For instance, you might want more information about recovery times so you can plan your work or activity schedule. You might also want to ask about clinical trials\(^4\) for which you may qualify.

Keep in mind that doctors are not the only ones who can provide you with information. Other health care professionals, such as nurses and social workers, may have the answers to some of your questions. You can find more information about communicating with your health care team in The Doctor-Patient Relationship\(^5\).

Hyperlinks

2. [www.cancer.org/treatment/treatments-and-side-effects/physical-side-effects.html](http://www.cancer.org/treatment/treatments-and-side-effects/physical-side-effects.html)

References


Written by

The American Cancer Society medical and editorial content team (www.cancer.org/cancer/acs-medical-content-and-news-staff.html)

Our team is made up of doctors and oncology certified nurses with deep knowledge of cancer care as well as journalists, editors, and translators with extensive experience in medical writing.

American Cancer Society medical information is copyrighted material. For reprint requests, please see our Content Usage Policy (www.cancer.org/about-us/policies/content-usage.html).

cancer.org | 1.800.227.2345