Lymphoma of the Skin Early Detection, Diagnosis, and Staging

Detection and Diagnosis

Catching cancer early often allows for more treatment options. Some early cancers may have signs and symptoms that can be noticed, but that is not always the case.

- Can Lymphoma of the Skin Be Found Early?
- Signs and Symptoms of Skin Lymphoma
- How Is Lymphoma of the Skin Diagnosed?

Stages of Skin Lymphoma

After a cancer diagnosis, staging provides important information about the extent of cancer in the body and anticipated response to treatment.

- How Is Lymphoma of the Skin Staged?

Questions to Ask About Skin Lymphoma

Here are some questions you can ask your cancer care team to help you better understand your diagnosis and treatment options.

- What Should I Ask My Doctor About Lymphoma of the Skin?

Can Lymphoma of the Skin Be Found Early?

This type of lymphoma first appears in the skin, so it is usually found earlier in the
course of the disease than many other types of cancer. Unfortunately, it is sometimes hard even for experienced doctors to diagnose skin lymphomas right away because they often look like other skin problems such as infections or eczema.

The best approach is to see a doctor if you notice symptoms that might be from a skin lymphoma (or another type of skin cancer). This includes any new lesion (abnormal area) on the skin, especially if it is raised, if it doesn’t go away, or if it is growing.

- References
 See all references for Lymphoma of the Skin

American Cancer Society medical information is copyrighted material. For reprint requests, please see our Content Usage Policy.

Signs and Symptoms of Skin Lymphoma

Lymphomas of the skin can be seen and felt. They can appear as:

- Papules (small, pimple-like lesions)
- Patches (flat lesions)
- Plaques (thick, raised or lowered lesions)
- Nodules or tumors (larger lumps or bumps under the skin)

The lesions are often itchy, scaly, and red to purple in color. The lymphoma might show up as more than one type of lesion and on different parts of the skin (often in areas not exposed to the sun). Some skin lymphomas appear as a rash over some or most of the body (known as *erythroderma*). Sometimes larger lesions can break open (ulcerate).

Along with skin problems, in rare cases lymphoma of the skin can cause general symptoms, such as:

- Unexplained weight loss
- Fever
- Profuse sweating (enough to soak clothing), particularly at night
• Severe itchiness
Most of these symptoms are more likely to be caused by other, less serious conditions. Still, if you have any of them it is important to have them checked by a doctor so that the cause can be found and treated, if needed.

• References
See all references for Lymphoma of the Skin

How Is Lymphoma of the Skin Diagnosed?

Because this type of lymphoma affects the skin, it is often noticed fairly quickly. But the actual diagnosis of skin lymphoma might be delayed because the symptoms often resemble other, more common skin problems. The diagnosis of skin lymphoma can only be confirmed with tests such as biopsies (described below).

Medical history and physical exam

Usually your doctor first takes your medical history. The doctor probably will ask when the changes in your skin first appeared, if they have changed in size or appearance, and if they are itchy or painful. You may be asked if you have any other symptoms, like fever or weight loss. Because skin lymphomas can be hard to tell apart from allergies and other causes of rashes, you might also be asked if you have recently been exposed to something that could be causing your skin problems, such as if you are taking a new medicine or are using a new laundry detergent or any new creams or lotions.

During the physical exam, your doctor will note the size, shape, color, and texture of any area(s) of skin in question. The rest of your body will be checked for other areas of skin involvement.

The doctor might also feel the lymph nodes (small, bean-sized collections of immune
cells) under the skin in the neck, underarm, or groin, as lymphomas can sometimes cause lymph nodes to become enlarged.

If you are being seen by your primary doctor and skin lymphoma or another type of skin cancer is suspected, you may be referred to a dermatologist (a doctor who treats skin diseases), who will look at the skin more closely.

Biopsy

A biopsy is a procedure in which a doctor removes a sample of body tissue for viewing under a microscope or other lab tests. A biopsy is needed to diagnose lymphoma of the skin.

Skin biopsies

There are several types of skin biopsies, and the doctor’s choice is based on each person’s situation. Usually a skin biopsy is done by a dermatologist.

Punch biopsy: For a punch biopsy, the doctor uses a tool that looks like a tiny round cookie cutter (usually a little more than 1/8 inch across). Once the skin is numbed with a local anesthetic, the doctor rotates the punch biopsy tool on the surface of the skin until it cuts through all the layers of the skin. Often the biopsy site is closed with a stitch.

Incisional and excisional skin biopsies: For these types of biopsies, a surgical knife is used to cut through the full thickness of skin. An incisional biopsy removes only part of the tumor, while an excisional biopsy removes the entire tumor. The piece of skin is removed for testing, and the edges of the cut are sewn together. These biopsies are usually done using a local anesthetic (numbing medicine).

Regardless of the type of skin biopsy, once the samples are removed, they are sent to a doctor called a pathologist, who will look at them under a microscope and might do other tests on them (see below).

Many of the more common forms of skin cancer (and other skin diseases) can be diagnosed just by looking at the biopsy samples under a microscope. But diagnosing and classifying lymphomas of the skin often requires one or more special lab tests (see below).

Diagnosing some forms of skin lymphoma can be very challenging. Sometimes, especially if the diagnosis is unclear, the skin samples may need to be sent to a
dermatopathologist, a dermatologist or a pathologist with additional training in diagnosing skin samples. Even with this expertise, in some cases several biopsies may be needed over a period of time before the diagnosis is confirmed.

Lymph node biopsies

Skin lymphomas often spread to lymph nodes, so your doctor may recommend a lymph node biopsy to help confirm the diagnosis or to help determine how widespread the lymphoma is. This is more likely to be done if the doctor detects enlarged lymph nodes, either during a physical exam or with imaging tests (see below).

Excisional or incisional lymph node biopsy: This is the most common type of lymph node biopsy. In this procedure, a surgeon cuts through the skin to remove either the entire lymph node (excisional biopsy) or a small part of a large tumor (incisional biopsy). If the node is just under the skin, this is often a simple operation that can be done with local anesthesia. But if the node is inside the chest or abdomen, the patient will be asleep or deeply sedated during the biopsy.

Removing a lymph node almost always provides enough tissue to diagnose the exact type of lymphoma. This type of biopsy is preferred by most doctors, if it can be done without too much discomfort to the patient.

Fine needle aspiration (FNA) biopsy: In an FNA biopsy, the doctor uses a very thin, hollow needle attached to a syringe to withdraw (aspirate) a small amount of tissue from a tumor. If an enlarged node is just under the skin, the doctor can aim the needle while feeling it. If the enlarged node is deep inside the body, the doctor can guide the needle while viewing it with ultrasound or a CT scan (see “Imaging tests” below).

An FNA does not require surgery, but in some cases it doesn’t remove enough tissue to make a definite diagnosis of lymphoma. But advances in lab tests (discussed later in this section) and the growing experience of many doctors with FNA have improved the accuracy of this procedure. Some doctors will use FNA in patients already diagnosed with lymphoma of the skin to confirm that an enlarged lymph node also contains lymphoma.

Other types of biopsies

These procedures may sometimes be done to confirm a diagnosis of lymphoma, but they are more often done to help stage (determine the extent of) a lymphoma that has already been diagnosed. Not everyone with lymphoma of the skin needs these tests.
Bone marrow aspiration and biopsy: These procedures are sometimes done after lymphoma has been diagnosed to help figure out if it has reached the bone marrow. The two tests are often done at the same time. The samples are usually taken from the back of the pelvic (hip) bone, but in some cases they may be taken from other bones.

In bone marrow aspiration, you lie on a table (either on your side or on your belly). The doctor cleans the skin over the hip and then numbs the area and the surface of the bone by injecting a local anesthetic. This may cause a brief stinging or burning sensation. A thin, hollow needle is then inserted into the bone and a syringe is used to suck out a small amount of liquid bone marrow. Even with the anesthetic, most patients still have some brief pain when the marrow is removed.

A bone marrow biopsy is usually done just after the aspiration. A small piece of bone and marrow is removed with a slightly larger needle that is pushed down into the bone. This may also cause some brief pain. Once the biopsy is done, pressure will be applied to the site to help stop any bleeding.

Lumbar puncture (spinal tap): This test looks for lymphoma cells in the cerebrospinal fluid (CSF), which is the liquid that bathes the brain and spinal cord. Most people with skin lymphoma will not need this test. But doctors may order it if a person has symptoms that suggest the lymphoma might have reached the brain.

For this test, you may be asked to lie on your side or sit up. The doctor first numbs an area in the lower part of the back over the spine. A small, hollow needle is then placed between the bones of the spine to withdraw some of the fluid.

Lab tests of biopsy or blood samples

Lab tests are done on the biopsy samples (and in some cases, blood samples) to help diagnose lymphoma and determine what type it is. Pathologists can sometimes tell which kind of lymphoma a patient has by just looking at the cells under a microscope, but usually these other types of tests are needed to confirm the diagnosis.

Immunohistochemistry

In this test, a part of the biopsy sample is treated with special antibodies (man-made versions of immune system proteins) that attach to cells only if specific molecules are on their surface or inside the cells. These antibodies cause color changes, which can be seen under a microscope. This test can be used to help diagnose lymphoma and tell what type it is.
Flow cytometry

Like immunohistochemistry, this test looks for certain substances on the surface of cells that help identify what types of cells they are. But this test can look at many more cells than immunohistochemistry.

For this test, a sample of cells is treated with special antibodies that stick to the cells only if certain substances are present on their surfaces. The cells are then passed in front of a laser beam. If the cells now have antibodies attached to them, the laser will cause them to give off light, which can be measured and analyzed by a computer. Groups of cells can be separated and counted by these methods.

This is the most commonly used test for immunophenotyping – classifying lymphoma cells based on the substances (antigens) on their surfaces. Different types of lymphocytes have different antigens on their surface. These antigens also change as each cell matures.

Flow cytometry can help tell whether a biopsy sample contains lymphoma, some other cancer, or a non-cancerous disease. It has also become very useful in helping doctors determine the exact type of lymphoma so that they can select the best treatment.

Cytogenetics

Doctors use this technique to evaluate the chromosomes (long strands of DNA) in lymphoma cells. The cells are looked at under a microscope to see if the chromosomes have any changes such as translocations (where part of one chromosome has broken off and is now attached to another chromosome), as happens in certain types of lymphoma. Some lymphoma cells may have too many chromosomes, too few chromosomes, or other chromosome abnormalities. These changes can help identify the type of lymphoma.

Cytogenetic testing usually takes about 2 to 3 weeks because the lymphoma cells must grow in lab dishes for a couple of weeks before their chromosomes can be viewed under the microscope.

Molecular genetic tests

These tests look more closely at lymphoma cell DNA. They can detect most changes that are visible under a microscope in cytogenetic tests, as well as others that can’t be seen. These changes can help doctors decide whether a rash or lesion is due to a benign condition or a skin lymphoma. These tests can also tell the difference between
B-cell and T-cell lymphomas.

Fluorescent in situ hybridization (FISH): FISH uses special fluorescent dyes that only attach to specific genes or parts of chromosomes. FISH can find most chromosome changes (such as translocations) that can be seen under a microscope in standard cytogenetic tests, as well as some changes too small to be seen with usual cytogenetic testing.

FISH can be used to look for specific gene or chromosome changes. It can be used on regular blood or bone marrow samples. It is very accurate and can usually provide results within a couple of days, which is why this test is now used in many medical centers.

Polymerase chain reaction (PCR): PCR is a very sensitive DNA test that can also find some gene and chromosome changes too small to be seen under a microscope, even if very few lymphoma cells are present in a sample.

Blood tests

Blood tests measure the amounts of certain types of cells and chemicals in the blood. They are not used to diagnose lymphoma, but they can sometimes help determine how advanced the lymphoma is. They may also be used during certain types of treatment (such as chemotherapy) to monitor how well the bone marrow and other organs are functioning.

Complete blood count (CBC): This test measures the levels of different cells in the blood, such as the red blood cells, the white blood cells, and the platelets. The CBC is often done with a differential (or “diff”) which counts the numbers of different types of white blood cells. People with Sezary syndrome will have Sezary cells in the blood, which can be found on the differential.

If a person’s blood counts are low, it might mean that the lymphoma is growing in the bone marrow and slowing normal blood cell production.

Blood chemistry tests: These tests look at how well the kidneys and liver are working.

If lymphoma has been diagnosed, another blood test called *lactate dehydrogenase (LDH)* may be done. LDH levels are often abnormally high in patients with widespread lymphoma.
Imaging tests

Imaging tests use x-rays, sound waves, magnetic fields, or radioactive particles to make pictures of the inside of the body. In someone with known or suspected lymphoma, these tests might be done for a number of reasons, including:

- To help find suspicious areas that might be cancer
- To learn how far the lymphoma has spread
- To find out if treatment is working
- To look for possible signs of the lymphoma coming back after treatment

Imaging tests aren’t always needed for patients with skin lymphomas who have only a few skin lesions, but they are often done in patients with a lot of skin involvement or if lymphoma cells are found in the lymph nodes or blood.

If you’d like to learn more about any of the imaging tests discussed here, see Imaging (Radiology) Tests.

Chest x-ray

An x-ray of the chest may be done to look for enlarged lymph nodes in this area.

Computed tomography (CT) scan

The CT scan uses x-rays to make detailed, cross-sectional images of your body. Unlike a regular x-ray, CT scans can show the detail in soft tissues (such as internal organs). This scan can help tell if any lymph nodes or organs in your body are enlarged.

Before the test, you may be asked to drink a liquid called oral contrast. This helps outline certain organs. You may also get an IV line through which a different kind of contrast dye (IV contrast) is injected. The injection can cause some flushing (a warm feeling, especially in the face). Some people are allergic to the dye and get hives or, rarely, have more serious reactions like trouble breathing and low blood pressure. Be sure to tell the doctor if you have any allergies (especially iodine or shellfish) or have ever had a reaction to any contrast material used for x-rays.

A CT scanner has been described as a large donut, with a narrow table that slides in and out of the middle opening. You need to lie still on the table while the scan is being done. CT scans take longer than regular x-rays, and some people might feel a bit confined by the ring while the pictures are being taken.
CT-guided needle biopsy: CT scans can also be used to guide a biopsy needle into a suspicious area. For this procedure, a person lies on the CT scanning table while the doctor advances a biopsy needle through the skin and toward the area. CT scans are repeated until the needle is in the right place. A biopsy sample is then removed and sent to the lab to be looked at under a microscope.

Magnetic resonance imaging (MRI) scan

Like CT scans, MRI scans provide detailed images of soft tissues in the body. But MRI scans use radio waves and strong magnets instead of x-rays. MRI scans are very helpful in looking at the brain and spinal cord, but they are not often used to evaluate skin lymphomas unless a CT scan can’t be done for some reason.

A contrast material called gadolinium is often injected into a vein before the scan to better see details. This contrast material usually does not cause allergic reactions.

MRI scans take longer than CT scans – often up to an hour. You may have to lie inside a narrow tube, which is confining and can be distressing to some people. Newer, more open MRI machines might be another option. The MRI machine makes loud buzzing and clicking noises that some people might find disturbing. Some places provide headphones or earplugs to help block this out.

Ultrasound

Ultrasound uses sound waves and their echoes to make pictures of internal organs or masses. For this test, a small, microphone-like instrument called a transducer is placed on the skin (which is first lubricated with a gel). It gives off sound waves and picks up the echoes as they bounce off the organs. A computer then converts the echoes into a black and white image on a screen.

Ultrasound can be used to look at lymph nodes near the surface of the body or to look inside your abdomen for enlarged lymph nodes or organs such as the liver and spleen. (It can’t be used to look at organs or lymph nodes in the chest because the ribs block the sound waves.) It is sometimes used to help guide a biopsy needle into an enlarged lymph node.

This is an easy test to have, and it uses no radiation. You simply lie on a table, and a technician moves the transducer over the part of your body being looked at.

Positron emission tomography (PET) scan
For a PET scan, a radioactive substance (usually a type of sugar related to glucose, known as FDG) is injected into the blood. The amount of radioactivity used is very low and will pass out of the body within a day or so. Because cancer cells in the body grow quickly, they absorb large amounts of the sugar. You then lie on a table in the PET scanner for about 30 minutes while a special camera creates a picture of areas of radioactivity in the body. The picture is not detailed like a CT or MRI scan, but it can look for possible areas of lymphoma in all areas of the body at once.

PET scans can help tell if an enlarged lymph node contains lymphoma or is benign. It can also help spot small areas that might be lymphoma, even if the area looks normal on a CT scan.

PET scans can also be used to tell if an advanced skin lymphoma is responding to treatment. Some doctors will repeat the PET scan after a few courses of chemotherapy. If the chemo is working, the abnormal areas will no longer take up the radioactive sugar.

Doctors often use a machine that does both a PET and CT scan at the same time (PET/CT scan). This lets the doctor compare areas of higher radioactivity on the PET scan with the more detailed appearance of that area on the CT scan.

References
See all references for Lymphoma of the Skin

Last Medical Review: August 4, 2014 Last Revised: February 24, 2016

American Cancer Society medical information is copyrighted material. For reprint requests, please see our Content Usage Policy.

How Is Lymphoma of the Skin Staged?

After someone is diagnosed with skin lymphoma, doctors will try to figure out if it has spread, and if so, how far. This process is called staging. The stage of a cancer describes how much cancer is in the body. It helps determine how serious the cancer is and how best to treat it. Doctors also use a cancer's stage when talking about survival statistics. Knowing the stage of a skin lymphoma may help in deciding the best treatment, but staging is not as important for skin lymphomas as it is for other types of cancer.
The staging systems for skin lymphomas were developed by the International Society for Cutaneous Lymphomas (ISCL) and the European Organization for Research and Treatment of Cancer (EORTC). There are 2 different staging systems – one for mycosis fungoides and Sezary syndrome and another for the other skin lymphomas. These systems are complex and can be hard to understand. If you have questions about the stage of your lymphoma, ask your cancer care team to explain it to you in a way you understand. This can help you make choices about your treatment.

Once skin lymphoma is diagnosed, tests are done to determine the stage (extent of spread) of the disease. The tests used to gather information for staging include:

- Physical exam
- Biopsies
- Imaging tests, such as CT scans
- Blood tests

These tests are described in [How Is Lymphoma of the Skin Diagnosed?](#)

Staging for mycosis fungoides and Sezary syndrome

Mycosis fungoides (MF) and Sezary syndrome (SS) are staged based on 4 factors:

- **T** describes how much of the skin is affected by the lymphoma (tumor).
- **N** describes the extent of the lymphoma in the lymph nodes.
- **M** is for the spread (metastasis) of the lymphoma to other organs.
- **B** is for lymphoma cells in the blood.

T categories

T1: Skin lesions can be small patches (flat lesions), papules (small bumps), and/or plaques (raised or lowered, flat lesions), but the lesions cover less than 10% of the skin surface.

T2: The patches, papules, and/or plaques cover 10% or more of the skin surface.

T3: At least one of the skin lesions is a tumor that is at least 1 centimeter (cm) across (a cm is a little less than 1/2 inch).

T4: The skin lesions have spread, grown larger, and grown together to cover at least 80% of the skin surface.
N categories

N0: Lymph nodes are not enlarged and a lymph node biopsy is not needed.

N1: Lymph nodes are enlarged, but the patterns of cells look normal or close to normal under the microscope.

N2: Lymph nodes are enlarged, and the patterns of cells look more abnormal under the microscope.

N3: Lymph nodes are enlarged, and the patterns of cells look very abnormal under the microscope.

NX: Lymph nodes are enlarged but haven't been removed (biopsied) to be looked at under the microscope.

M categories

M0: The lymphoma cells have not spread outside the skin or lymph nodes.

M1: Lymphoma cells have spread to other organs or tissues, such as the liver or spleen.

B categories

B0: Less than 5% of lymphocytes in the blood are Sezary (lymphoma) cells.

B1: Low numbers of Sezary cells in the blood (more than in B0 but less than in B2).

B2: High number of Sezary cells in the blood.

Stage grouping

Once the values for T, N, M, and B are known, they are combined to determine the overall stage of the lymphoma. This process is called *stage grouping*.

Mycosis fungoides (MF) and! Sezary syndrome (SS) stages range from I (1) through IV (4). As a rule, the lower the number, the less the cancer has spread. A higher number, such as stage IV, means cancer has spread more. And within a stage, an earlier letter means a lower stage. Although each person’s cancer experience is unique, cancers
with similar stages tend to have a similar outlook and are often treated in much the same way.

Stage IA: T1, N0, M0, B0 or B1

There are skin lesions but no tumors. Skin lesions cover less than 10% of the skin surface (T1), the lymph nodes are not enlarged (N0), lymphoma cells have not spread to other organs or tissues (M0), and the number of Sezary cells in the blood is not high (B0 or B1).

Stage IB: T2, N0, M0, B0 or B1

There are skin lesions but no tumors. Skin lesions cover at least 10% of the skin surface (T2), the lymph nodes are not enlarged (N0), lymphoma cells have not spread to other organs or tissues (M0), and the number of Sezary cells in the blood is not high (B0 or B1).

Stage IIA: T1 or T2, N1 or N2, M0, B0 or B1

There are skin lesions but no tumors. Skin lesions can cover up to 80% of the skin surface (T1 or T2). Lymph nodes are enlarged but the patterns of cells do not look very abnormal under the microscope (N1 or N2). Lymphoma cells have not spread to other organs or tissues (M0), and the number of Sezary cells in the blood is not high (B0 or B1).

Stage IIB: T3, N0 to N2, M0, B0 or B1

At least one of the skin lesions is a tumor that is 1 cm across or larger (T3). The lymph nodes are either normal (N0) or are enlarged but the patterns of cells do not look very abnormal under the microscope (N1 or N2). Lymphoma cells have not spread to other organs or tissues (M0), and the number of Sezary cells in the blood is not high (B0 or B1).

Stage IIIA: T4, N0 to N2, M0, B0

Skin lesions cover at least 80% of the skin surface (T4). The lymph nodes are either normal (N0) or are enlarged but the patterns of cells do not look very abnormal under the microscope (N1 or N2). Lymphoma cells have not spread to other organs or tissues (M0), and there are few (or no) Sezary cells in the blood (B0).

Stage IIIB: T4, N0 to N2, M0, B1
Skin lesions cover at least 80% of the skin surface (T4). The lymph nodes are either normal (N0) or are enlarged but the patterns of cells do not look very abnormal under the microscope (N1 or N2). Lymphoma cells have not spread to other organs or tissues (M0), and the number of Sezary cells in the blood is low (B1).

Stage IVA₁: any T, N0 to N2, M0, B2

Skin lesions can cover any amount of the skin surface (any T). The lymph nodes are either normal (N0) or are enlarged but the patterns of cells do not look very abnormal under the microscope (N1 or N2). Lymphoma cells have not spread to other organs or tissues (M0), and the number of Sezary cells in the blood is high (B2).

Stage IVA₂: any T, N3, M0, any B

Skin lesions can cover any amount of the skin surface (any T). Some lymph nodes are enlarged and the patterns of cells look very abnormal under the microscope (N3). Lymphoma cells have not spread to other organs or tissues (M0). Sezary cells may or may not be in the blood (any B).

Stage IVB: any T, any N, M1, any B

Skin lesions can cover any amount of the skin surface (any T). The lymph nodes may be normal or abnormal (any N), and Sezary cells may or may not be in the blood (any B). Lymphoma cells have spread to other organs or tissues, such as the liver or spleen (M1).

Staging for other skin lymphomas

The staging system for types of skin lymphoma other than mycosis fungoides and Sezary syndrome is still fairly new, and doctors are still trying to determine how useful it is. The system is based on 3 factors:

- **T** describes how much of the skin is affected by the lymphoma (tumor).
- **N** describes the extent of the lymphoma in the lymph nodes.
- **M** is for the spread (metastasis) of the lymphoma to other organs.

For these lymphomas, only the T category is used at the time of diagnosis. If sites besides the skin (such as lymph nodes) are involved at the time of diagnosis, these lymphomas are no longer considered skin lymphomas and are staged like regular non-Hodgkin lymphoma. The N and M categories are only used if the lymphoma progresses (continues to grow) during treatment or comes back after treatment.
T categories

T1: There is only a single skin lesion.

T1a: The skin lesion is less than 5 cm (about 2 inches) across.

T1b: The skin lesion is larger than 5 cm across.

T2: There are 2 or more lesions on the skin. These may be in a single body region or in 2 body regions that are next to each other.

T2a: All of the skin lesions could be placed within a circle that is 15 cm (about 6 inches) across.

T2b: The circle needed to surround all of the skin lesions is larger than 15 cm across, but smaller than 30 cm (about 1 foot) across.

T2c: The circle needed to surround all of the skin lesions is larger than 30 cm across.

T3: There are skin lesions in body regions that aren’t next to each other, or in at least 3 different body regions.

T3a: There are many lesions involving 2 body regions that aren’t next to each other.

T3b: There are many lesions involving 3 or more body regions.

N categories

N0: No lymph node is enlarged or contains lymphoma cells.

N1: There are lymphoma cells in the lymph nodes that drain an area where skin contained lymphoma.

N2: One of the following is true:

- At least 2 sets of lymph nodes from different areas contain lymphoma cells
- There are lymphoma cells in lymph nodes that do not drain areas where the skin contained lymphoma.

N3: Lymph nodes deep inside the chest or abdomen contain lymphoma cells.
M categories

M0: No signs of lymphoma outside of the skin or lymph nodes.

M1: Lymphoma has spread to other organs or tissues.

This system does not assign an overall stage to the lymphoma, as the system for mycosis fungoides/Sezary syndrome does. Because this system is still fairly new, it’s not yet clear how well it can help predict a person’s prognosis (outlook).

- References
 See all references for Lymphoma of the Skin

What Should I Ask My Doctor About Lymphoma of the Skin?

It’s important to have honest, open discussions with your cancer care team. They want to answer all of your questions, no matter how minor they might seem. For instance, consider asking these questions:

- What kind of skin lymphoma do I have?
- Has my biopsy been reviewed by a pathologist who is an expert on skin lymphoma?
- How sure are you of my diagnosis?
- What is the stage (extent) of the lymphoma, and what does that mean in my case?
- Do I need any other tests before we can decide on treatment?
- Do I need to see any other doctors?
- How much experience do you have treating this type of lymphoma?
- Should I get a second opinion before starting treatment? Can you suggest someone?
- What are my treatment choices? Do we need to treat the lymphoma right away?
- What do you recommend and why?
What is the goal of the treatment?
What should I do to be ready for treatment?
How long will treatment last? What will it be like? Where will it be done?
What are the risks or side effects of the treatments you suggest?
How will treatment affect my daily activities?
What is my outlook for survival?
What are the chances of the lymphoma coming back with these treatment plans?
What would we do if the treatment doesn’t work or if the lymphoma recurs?
What type of follow-up will I need after treatment?

Along with these sample questions, be sure to write down some of your own. For instance, you might want more information about recovery times so that you can plan your work or activity schedule. Or you might ask if you qualify for any clinical trials.

Keep in mind that doctors are not the only ones who can give you information. Other health care professionals, such as nurses and social workers, might be able to answer some of your questions. You can find out more about speaking with your health care team in Talking With Your Doctor.

- References

See all references for Lymphoma of the Skin

Last Medical Review: August 4, 2014 Last Revised: February 24, 2016

American Cancer Society medical information is copyrighted material. For reprint requests, please see our Content Usage Policy.

2016 Copyright American Cancer Society