About Osteosarcoma

Overview and Types

If you have been diagnosed with osteosarcoma or worried about it, you likely have a lot of questions. Learning some basics is a good place to start.

- What Is Osteosarcoma?

Research and Statistics

See the latest estimates for new cases of osteosarcoma in the US and what research is currently being done.

- Key Statistics for Osteosarcoma
- What’s New in Osteosarcoma Research?

What Is Osteosarcoma?

Cancer starts when cells in the body begin to grow out of control. Cells in nearly any part of the body can become cancer, and can spread to other areas of the body. To learn more about how cancers start and spread, see What Is Cancer?

Osteosarcoma (also called osteogenic sarcoma) is the most common type of cancer that starts in the bones. The cancer cells in these tumors look like early forms of bone cells that normally help make new bone tissue, but the bone tissue in an osteosarcoma
is not as strong as that of normal bones.

Most osteosarcomas occur in children and young adults. Teens are the most commonly affected age group, but osteosarcoma can develop at any age. (For information about the differences between childhood cancers and adult cancers, see Cancer in Children\(^2\).)

Where does osteosarcoma start?

In children and young adults, osteosarcoma usually starts in areas where the bone is growing quickly, such as near the ends of the leg or arm bones:

- Most tumors develop in the **bones around the knee**, either in the distal femur (the lower part of the thigh bone) or the proximal tibia (the upper part of the shinbone).
- The **upper arm bone close to the shoulder** (proximal humerus) is the next most common site.

Still, osteosarcoma can develop in any bone, including the bones of the pelvis (hips), shoulder, and jaw. This is especially true in older adults.

Subtypes of osteosarcoma

Based on how the cells look under the microscope, osteosarcomas can be classified as high grade, intermediate grade, or low grade. The grade of the tumor tells doctors how likely it is that the cancer will grow and spread to other parts of the body.

High-grade osteosarcomas

These are the fastest growing types of osteosarcoma. When seen with a microscope, they do not look like normal bone and have many cells in the process of dividing into new cells. Most osteosarcomas that occur in children and teens are high grade. There are many types of high-grade osteosarcomas (although the first 3 are the most common).

- Osteoblastic
- Chondroblastic
- Fibroblastic
- Small cell
- Telangiectatic
- High-grade surface (juxtacortical high grade)
Other high-grade osteosarcomas include:

- Pagetoid: a tumor that develops in someone with Paget disease of the bone
- Extraskeletal: a tumor that starts in a part of the body other than a bone (but still makes bone tissue)
- Post-radiation: a tumor that starts in a bone that had once been treated with radiation

Intermediate-grade osteosarcomas

These uncommon tumors fall between high-grade and low-grade osteosarcomas. (They are usually treated the same way as low-grade osteosarcomas.)

- Periosteal (juxtacortical intermediate grade)

Low-grade osteosarcomas

These are the slowest-growing osteosarcomas. The tumors look more like normal bone and have few dividing cells when seen with a microscope.

- Parosteal (juxtacortical low grade)
- Intramedullary or intraosseous well differentiated (low-grade central)

The grade of the tumor plays a role in determining its stage and the type of treatment used. For more on staging, see Osteosarcoma Stages.

Other types of bone tumors

Several other types of tumors can start in the bones.

Malignant (cancerous) bone tumors

Ewing tumors are the second most common bone cancer in children. They are described in Ewing Family of Tumors.

Most other types of bone cancers are usually found in adults and are rare in children.
These include:

- Chondrosarcoma (cancer that develops from cartilage)
- Malignant fibrous histiocytes (MFH) of bone, also known as undifferentiated pleomorphic sarcoma of bone
- Fibrosarcoma
- Chordoma
- Malignant giant cell tumor of bone

For more information on these cancers, see Bone Cancer⁷.

Many types of cancer that start in other organs of the body, especially cancers in adults, can spread to the bones. These are sometimes referred to as metastatic bone cancers, but they are not true bone cancers. For example, prostate cancer that spreads to the bones is still prostate cancer and is treated like prostate cancer. For more information, see Bone Metastasis⁸.

Benign (non-cancerous) bone tumors

Not all bone tumors are cancer. Benign bone tumors do not spread to other parts of the body. They are usually not life threatening and can often be cured by surgery. There are many types of benign bone tumors, including:

- Osteoma
- Chondroma
- Osteochondroma
- Eosinophilic granuloma of bone
- Non-ossifying fibroma
- Enchondroma
- Benign giant cell tumor of bone
- Lymphangioma

Hyperlinks

Key Statistics for Osteosarcoma

Osteosarcoma is not a common cancer. Each year, about 800 to 900 new cases of osteosarcoma are diagnosed in the United States. About half of these are in children and teens.

Most osteosarcomas occur in children and young adults between the ages of 10 and 30. Teens are the most commonly affected age group, but people of any age can develop osteosarcoma. About 10% of all osteosarcomas occur in people older than 60.
About 2% of childhood cancers are osteosarcomas, but they make up a much smaller percentage of adult cancers.

The prognosis (outlook) for people with osteosarcoma depends on many factors, including the location of the tumor, whether the cancer has spread (metastasized) when it’s first found, and the person’s age. Statistics related to survival are discussed in Survival Rates for Osteosarcoma.¹

Visit the American Cancer Society’s Cancer Statistics Center² for more key statistics.

Hyperlinks

References

Last Medical Review: January 24, 2018 Last Revised: January 8, 2020
What’s New in Osteosarcoma Research?

Research on osteosarcoma is now being done at medical centers, university hospitals, and other institutions across the world.

Understanding osteosarcoma

Researchers are learning more about what makes osteosarcoma cells different from normal bone cells. Knowing more about the changes in osteosarcoma cells might eventually result in specific treatments that exploit these changes. For example, researchers have found that osteosarcoma cells often have large amounts of a substance called GD2 on their surfaces. Drugs that target GD2 are already used to treat neuroblastoma (another cancer often seen in children), and are now being studied for use against osteosarcoma.

Tests of gene changes might help predict the behavior of each tumor, such as how they will respond to certain types of chemotherapy. These are now being tested in clinical trials.

Treatment

Great advances have been made in treating osteosarcoma in the past few decades. Still, more research is needed to learn how best to manage hard-to-treat osteosarcomas, such as those that have already spread when they are found. Many clinical trials are focusing on treating osteosarcoma using a variety of strategies.

Surgery

Doctors now have a much better understanding of the typical growth and spread of osteosarcomas than they did in the past. This, along with newer imaging tests that better define the extent of tumors, lets them plan surgeries to remove the cancer while sparing as much normal tissue as possible.

Some newer types of internal prostheses (man-made devices used to replace pieces of bone) can now be expanded without the need for more surgery. This is especially important for children, who in the past often needed several operations to replace the prosthesis with a larger one as they grew.
Radiation therapy

Osteosarcoma cells are not killed easily by radiation, so high doses are needed to have an effect. This has limited the use of radiation, because high doses can often cause unacceptable side effects. Newer forms of radiation let doctors focus the radiation more precisely on the tumor. This limits the doses received by nearby healthy tissues and may allow higher doses to be used on the tumor itself.

Intensity-modulated radiation therapy (IMRT) is an example of an advanced form of therapy. In this technique, radiation beams are shaped to fit the tumor and aimed at it from several angles. The intensity (strength) of the beams can also be adjusted to limit the dose reaching nearby normal tissues. This may let the doctor deliver a higher dose to the tumor. Many major hospitals and cancer centers now use IMRT, especially for tumors in hard-to-treat areas such as the spine or pelvis (hip bones).

Stereotactic radiosurgery (SRS) gives a large dose of radiation to a small tumor area, usually in one session. Once imaging tests show the exact location of the tumor, radiation is sent to the area from many different angles. The radiation is very precisely aimed so that it has as little effect on nearby tissues as possible. Sometimes doctors give the radiation in several smaller treatments to deliver the same or slightly higher dose. This is called fractionated stereotactic radiotherapy.

Another newer approach is to use radioactive particles instead of x-rays to deliver the radiation. One example is conformal proton beam therapy, which uses positive parts of atoms. Unlike x-rays, which release energy both before and after they hit their target, protons cause little damage to tissues they pass through and then release their energy after traveling a certain distance. Doctors can use this property to deliver more radiation to the tumor and to do less damage to nearby normal tissues. Proton beam therapy may be helpful for hard-to-treat tumors, such as those on the spine or pelvic bones. The machines needed to make protons are expensive, and there are only a handful of them in the United States at this time.

An even newer approach uses carbon ions, which are heavier than protons and cause more damage to cancer cells. This therapy is still in the earliest stages of development and is only available in a few centers around the world.

Doctors are also studying newer forms of radioactive drugs to treat osteosarcoma that has spread to many bones. One example is radium-223 (Xofigo), which works slightly differently than the other drugs now being used.

Chemotherapy
Clinical trials are being done to determine the best combinations of chemotherapy\(^2\) (chemo) drugs, as well as the best time to give them. Newer chemo drugs are being studied as well.

The lungs are the most common place for osteosarcoma to spread. Inhaled forms of some chemo drugs (such as cisplatin) are being studied for patients whose cancer has spread to their lungs. Early results have been promising.

Other forms of treatment

Chemo drugs are often effective against osteosarcoma, but sometimes they don’t work or the cancer becomes resistant to them over time. Researchers are studying newer types of drugs that attack osteosarcoma cells in different ways.

Immunotherapy drugs

Clinical trials are looking into ways to help the patient’s own immune system recognize and attack the osteosarcoma cells. For example:

- Drugs called **immune checkpoint inhibitors** can sometimes help the body’s immune system recognize and attack cancer cells. These drugs have already been shown to be helpful against many types of cancer, and some of them are now being studied for use against osteosarcoma.
- An experimental immune-modulating drug called **muramyl tripeptide** (also known as MTP or mifamurtide) has been shown to help some patients when added to chemotherapy.

Targeted therapy drugs

Doctors are also studying new medicines that target specific molecules on the cancer cells. These are known as **targeted therapies\(^3\)**. Some of these are man-made versions of immune system proteins, known as monoclonal antibodies. These antibodies attach to certain proteins on the cancer cell and help to stop the growth or kill the cancer cells. An example is **dinutuximab** (Unituxin), which attaches to GD2, a protein that is important for cancer cell growth.

Many other targeted drugs are being studied for use against osteosarcoma, including:

- Drugs that affect a tumor’s ability to make new blood vessels, such as sorafenib (Nexavar) and pazopanib (Votrient).
Drugs that target the mTOR protein, such as temsirolimus (Torisel) and everolimus (Afinitor).

Drugs that affect the bones

Other drugs that target bone cells called osteoclasts may also be useful against osteosarcoma:

- **Bisphosphonates** are a group of drugs that are already used to treat osteoporosis (bone thinning) and certain cancers that have spread to the bone. Some of these drugs, such as pamidronate and zoledronic acid, are now being studied for use in osteosarcoma as well.
- **Denosumab** is a monoclonal antibody that targets the RANKL protein, which normally helps bones grow. It is now being studied for use against osteosarcoma.
- Another drug that affects bones, known as **saracatinib** (AZD0530), is also being studied.

Hyperlinks

References

Written by

The American Cancer Society medical and editorial content team (www.cancer.org/cancer/acs-medical-content-and-news-staff.html)

Our team is made up of doctors and oncology certified nurses with deep knowledge of cancer care as well as journalists, editors, and translators with extensive experience in medical writing.

American Cancer Society medical information is copyrighted material. For reprint requests, please see our Content Usage Policy (www.cancer.org/about-us/policies/content-usage.html).