Prostate Cancer Early Detection, Diagnosis, and Staging

Finding Prostate Cancer Early

Catching cancer early often allows for more treatment options. Some early cancers may have signs and symptoms that can be noticed, but that is not always the case.

- Can Prostate Cancer Be Found Early?
- Screening Tests for Prostate Cancer
- American Cancer Society Recommendations for Prostate Cancer Early Detection
- Insurance Coverage for Prostate Cancer Screening

Diagnosis and Planning Treatment

After a cancer diagnosis, staging provides important information about the extent of cancer in the body and anticipated response to treatment.

- Signs and Symptoms of Prostate Cancer
- Tests to Diagnose and Stage Prostate Cancer
- Prostate Pathology¹
- Prostate Cancer Stages and Other Ways to Assess Risk
- Survival Rates for Prostate Cancer
- Questions To Ask About Prostate Cancer
Can Prostate Cancer Be Found Early?

Screening is testing to find cancer in people before they have symptoms. For some types of cancer, screening can help find cancers at an early stage, when they are likely to be easier to treat.

Prostate cancer can often be found early by testing for prostate-specific antigen (PSA) levels in a man’s blood. Another way to find prostate cancer is the digital rectal exam (DRE). For a DRE, the doctor puts a gloved, lubricated finger into the rectum to feel the prostate gland. These tests and the actual process of screening are described in more detail in Screening Tests for Prostate Cancer.

If the results of either of these tests is abnormal, further testing (such as a prostate biopsy) is often done to see if a man has cancer.

Concerns about prostate cancer screening

If prostate cancer is found as a result of screening, it will probably be at an earlier, more treatable stage than if no screening were done. While this might make it seem like prostate cancer screening would always be a good thing, there are still issues surrounding screening that make it unclear if the benefits outweigh the risks for most men.

Possible inaccurate or unclear test results

As an example, neither the PSA test nor the DRE is 100% accurate. These tests can sometimes have abnormal results even when a man does not have cancer (known as a false-positive result), or normal results even when a man does have cancer (known as a false-negative result). Unclear test results can cause confusion and anxiety. False-positive results can lead some men to get prostate biopsies (with small risks of pain, infection, and bleeding) when they don’t have cancer. And false-negative results can give some men a false sense of security even though they might actually have cancer.

Overdiagnosis and overtreatment

Another important issue is that even if screening detects prostate cancer, doctors sometimes can’t tell if the cancer is truly dangerous (and therefore needs to be treated). Finding and treating all prostate cancers early might seem to make sense, but some prostate cancers grow so slowly that they would never cause a man problems during his lifetime.
Because of screening, some men may be diagnosed with a prostate cancer that they would have never known about otherwise. It would never have led to their death, or even caused any symptoms. Finding a ‘disease’ like this that would never cause problems is known as overdiagnosis.

A problem with overdiagnosis in prostate cancer is that many of these men might still be treated with either surgery or radiation, either because the doctor can’t be sure how quickly the cancer might grow and spread, or because the man is uncomfortable knowing he has cancer and is not getting any treatment. Treatment of a cancer that would never have caused any problems is known as overtreatment. The major downside with this is that even if they weren’t needed, treatments like surgery and radiation can still have urinary, bowel, and/or sexual side effects that can seriously affect a man’s quality of life.

Men and their doctors may end up struggling to decide if treatment is needed or if the cancer can just be closely watched without being treated right away (an approach called watchful waiting or active surveillance). Even when men are not treated right away, they still need regular blood PSA tests and prostate biopsies to determine their need for treatment in the future. These tests are linked with risks of anxiety, pain, infection, and bleeding.

Benefits of screening in studies have not been clear

Doctors are still studying if screening tests will lower the risk of death from prostate cancer. The most recent results from 2 large studies were conflicting, and didn’t offer clear answers.

- Early results from a large study done in the United States found that annual screening with PSA and DRE did detect more prostate cancers than in men not screened, but this screening did not lower the death rate from prostate cancer. However, questions have been raised about this study, because some men in the non-screening group actually were screened during the study, which might have affected the results.
- A European study did find a lower risk of death from prostate cancer with PSA screening (done about once every 4 years), but the researchers estimated that about 781 men would need to be screened (and 27 cancers detected) to prevent one death from prostate cancer.
- Neither of these studies has shown that PSA screening helps men live longer overall (that is, that it lowers the overall death rate).
Prostate cancer is often slow-growing, so the effects of screening in these studies might become clearer in the coming years. Both of these studies are being continued to see if longer follow-up will give clearer results. Prostate cancer screening is being studied in several other large studies, as well.

For now, the American Cancer Society recommends that men thinking about getting tested for prostate cancer learn as much as they can so they can make informed decisions based on available information, discussions with their doctor, and their own views on the possible benefits, risks, and limits of prostate cancer screening. (See American Cancer Society Recommendations for Prostate Cancer Early Detection.)

Until more information is available, you and your doctor should decide whether you should be screened for prostate cancer. There are many factors to take into account, including your age, health, and family history. For example, if you’re young and develop prostate cancer, it may shorten your life if it’s not caught early. Screening men who are older or in poor health is less likely to help them live longer. This is because most prostate cancers are slow-growing, and men who are older or have major health problems are more likely to die from other causes before their prostate cancer grows enough to cause problems.

Hyperlinks

References

Screening Tests for Prostate Cancer

Screening is testing to find cancer in people before they have symptoms. It’s not clear, however, if the benefits of prostate cancer screening outweigh the risks for most men. Still, after discussing the pros and cons of screening with their doctors, some men might reasonably choose to be screened.

The screening tests discussed here are used to look for possible signs of prostate cancer. But these tests can’t tell for sure if you have cancer. If the result of one of these tests is abnormal, you will probably need a prostate biopsy (discussed below) to know for sure if you have cancer.

Prostate-specific antigen (PSA) blood test

Prostate-specific antigen (PSA) is a protein made by cells in the prostate gland (both normal cells and cancer cells). PSA is mostly found in semen, but a small amount is also found in blood.

The PSA level in blood is measured in units called nanograms per milliliter (ng/mL). The chance of having prostate cancer goes up as the PSA level goes up, but there is no set cutoff point that can tell for sure if a man does or doesn’t have prostate cancer. Many doctors use a PSA cutoff point of 4 ng/mL or higher when deciding if a man might need further testing, while others might recommend it starting at a lower level, such as 2.5 or 3.

- Most men without prostate cancer have PSA levels under 4 ng/mL of blood. When prostate cancer develops, the PSA level often goes above 4. Still, a level below 4 is not a guarantee that a man doesn’t have cancer. About 15% of men with a PSA below 4 will have prostate cancer if a biopsy is done.
- Men with a PSA level between 4 and 10 (often called the “borderline range”)

have about a 1 in 4 chance of having prostate cancer.
- If the PSA is more than 10, the chance of having prostate cancer is over 50%.

If your PSA level is high, you might need further tests to look for prostate cancer (see ‘If screening tests results aren’t normal’, below).

Factors that might affect PSA levels

One reason it’s hard to use a set cutoff point with the PSA test when looking for prostate cancer is that a number of factors other than cancer can also affect PSA levels.

Factors that might raise PSA levels include:

- **An enlarged prostate**: Conditions such as benign prostatic hyperplasia (BPH), a non-cancerous enlargement of the prostate that affects many men as they grow older, can raise PSA levels.
- **Older age**: PSA levels normally go up slowly as you get older, even if you have no prostate abnormality.
- **Prostatitis**: This is an infection or inflammation of the prostate gland, which can raise PSA levels.
- **Ejaculation**: This can make the PSA go up for a short time. This is why some doctors suggest that men abstain from ejaculation for a day or two before testing.
- **Riding a bicycle**: Some studies have suggested that cycling may raise PSA levels for a short time (possibly because the seat puts pressure on the prostate), although not all studies have found this.
- **Certain urologic procedures**: Some procedures done in a doctor’s office that affect the prostate, such as a prostate biopsy or cystoscopy, can raise PSA levels for a short time. Some studies have suggested that a digital rectal exam (DRE) might raise PSA levels slightly, although other studies have not found this. Still, if both a PSA test and a DRE are being done during a doctor visit, some doctors advise having the blood drawn for the PSA before having the DRE, just in case.
- **Certain medicines**: Taking male hormones like testosterone (or other medicines that raise testosterone levels) may cause a rise in PSA.

Some things might lower PSA levels (even if a man has prostate cancer):

- **5-alpha reductase inhibitors**: Certain drugs used to treat BPH or urinary symptoms, such as finasteride (Proscar or Propecia) or dutasteride (Avodart), can
lower PSA levels. These drugs can also affect prostate cancer risk (discussed in Can Prostate Cancer Be Prevented?). Tell your doctor if you are taking one of these medicines. Because they can lower PSA levels, the doctor might need to adjust for this.

- **Herbal mixtures:** Some mixtures that are sold as dietary supplements might mask a high PSA level. This is why it’s important to let your doctor know if you are taking any type of supplement, even ones that are not necessarily meant for prostate health. Saw palmetto (an herb used by some men to treat BPH) does not seem to affect PSA.

- **Certain other medicines:** Some research has suggested that long-term use of certain medicines, such as aspirin, statins (cholesterol-lowering drugs), and thiazide diuretics (such as hydrochlorothiazide) might lower PSA levels. More research is needed to confirm these findings. If you take any of the medicines regularly, talk to your doctor before you stop taking it for any reason.

For men who might be screened for prostate cancer, it’s not always clear if lowering the PSA is helpful. In some cases the factor that lowers the PSA may also lower a man’s risk of prostate cancer. But in other cases, it might lower the PSA level without affecting a man’s risk of cancer. This could actually be harmful, if it were to lower the PSA from an abnormal level to a normal one, as it might result in not detecting a cancer. This is why it’s important to talk to your doctor about anything that might affect your PSA level.

Special types of PSA tests

If you decide to get a PSA screening test and the result isn’t normal, some doctors might consider using different types of PSA tests to help decide if you need a prostate biopsy, although not all doctors agree on how to use these tests. If your PSA test result isn’t normal, ask your doctor to discuss your cancer risk and your need for further tests.

Percent-free PSA: PSA occurs in 2 major forms in the blood. One form is attached to blood proteins, while the other circulates free (unattached). The percent-free PSA (%fPSA) is the ratio of how much PSA circulates free compared to the total PSA level. The percentage of free PSA is lower in men who have prostate cancer than in men who do not.

If your PSA test result is in the borderline range (between 4 and 10), the percent-free PSA might be used to help decide if you should have a prostate biopsy. A lower percent-free PSA means that your chance of having prostate cancer is higher and you should probably have a biopsy.
Many doctors recommend a prostate biopsy for men whose percent-free PSA is 10% or less, and advise that men consider a biopsy if it is between 10% and 25%. Using these cutoffs detects most cancers and helps some men avoid unnecessary biopsies. This test is widely used, but not all doctors agree that 25% is the best cutoff point to decide on a biopsy, and the cutoff may change depending on the overall PSA level.

Complexed PSA: This test directly measures the amount of PSA that is attached to other proteins (the portion of PSA that is not “free”). This test could be done instead of checking the total and free PSA, and it could give the same amount of information, but it is not widely used.

Tests that combine different types of PSA: Some newer tests combine the results of different types of PSA to get an overall score that reflects the chance a man has prostate cancer (particularly cancer that might need treatment). These tests include:

- The **Prostate Health Index (PHI)**, which combines the results of total PSA, free PSA, and proPSA
- The **4Kscore test**, which combines the results of total PSA, free PSA, intact PSA, and human kallikrein 2 (hK2), along with some other factors

These tests might be useful in men with a slightly elevated PSA, to help determine if they should have a prostate biopsy. These tests might also be used to help determine if a man who has already had a prostate biopsy that didn’t find cancer should have another biopsy.

PSA velocity: The PSA velocity is not a separate test. It is a measure of how fast the PSA rises over time. Normally, PSA levels go up slowly with age. Some research has found that these levels go up faster if a man has cancer, but studies have not shown that the PSA velocity is more helpful than the PSA level itself in finding prostate cancer. For this reason, the ACS guidelines\(^2\) do not recommend using the PSA velocity as part of screening for prostate cancer.

PSA density: PSA levels are higher in men with larger prostate glands. The PSA density (PSAD) is sometimes used for men with large prostate glands to try to adjust for this. The doctor measures the volume (size) of the prostate gland with transrectal ultrasound (discussed in Tests to Diagnose and Stage Prostate Cancer\(^3\)) and divides the PSA number by the prostate volume. A higher PSA density indicates a greater likelihood of cancer. PSA density has not been shown to be as useful as the percent-free PSA test.
Age-specific PSA ranges: PSA levels are normally higher in older men than in younger men, even when there is no cancer. A PSA result within the borderline range might be worrisome in a 50-year-old man but cause less concern in an 80-year-old man. For this reason, some doctors have suggested comparing PSA results with results from other men of the same age.

But the usefulness of age-specific PSA ranges is not well proven, so most doctors and professional organizations (as well as the makers of the PSA tests) do not recommend their use at this time.

Digital rectal exam (DRE)

For a digital rectal exam (DRE), the doctor inserts a gloved, lubricated finger into the rectum to feel for any bumps or hard areas on the prostate that might be cancer. As shown in the picture below, the prostate is just in front of the rectum. Prostate cancers often begin in the back part of the gland, and can sometimes be felt during a rectal exam. This exam can be uncomfortable (especially for men who have hemorrhoids), but it usually isn’t painful and only takes a short time.

DRE is less effective than the PSA blood test in finding prostate cancer, but it can sometimes find cancers in men with normal PSA levels. For this reason, it might be included as a part of prostate cancer screening.

If screening test results aren’t normal

If you are screened for prostate cancer and your initial blood PSA level is higher than
normal, it doesn’t always mean that you have prostate cancer. Many men with higher than normal PSA levels do not have cancer. Still, further testing will be needed to help find out what is going on. Your doctor may advise one of these options:

- Waiting a while and having a second PSA test
- Getting another type of test to get a better idea of if you might have cancer (and therefore should get a prostate biopsy)
- Getting a prostate biopsy to find out if you have cancer

It’s important to discuss your options, including their possible pros and cons, with your doctor to help you choose one you are comfortable with. Factors that might affect which option is best for you include:

- Your age and overall health
- The likelihood that you have prostate cancer (based on tests done so far)
- Your own comfort level with waiting or getting further tests

If your initial PSA test was ordered by your primary care provider, you may be referred to a urologist (a doctor who treats cancers of the genital and urinary tract, which includes the prostate gland) for this discussion or for further testing.

Repeating the PSA test

A man’s blood PSA level can vary over time (for a number of reasons), so some doctors recommend repeating the test after a month or so if the initial PSA result is abnormal. This is most likely to be a reasonable option if the PSA level is on the lower end of the borderline range (typically 4 to 7 ng/mL). For higher PSA levels, doctors are more likely to recommend getting other tests, or going straight to a prostate biopsy.

Getting other tests

If the initial PSA result is abnormal, another option might be to get another type of test (or tests) to help you and your doctor get a better idea if you might have prostate cancer (and therefore need a biopsy). Some of the tests that might be done include:

- A digital rectal exam (DRE), if it hasn’t been done already
- One or more of the other special types of PSA tests discussed above, such as the Prostate Health Index (PHI), 4Kscore test, or percent-free PSA, or other lab tests, such as the ExoDx Prostate(IntelliScore) (described in What’s New in
Prostate Cancer Research4

- An imaging test of the prostate gland, such as MRI (especially multiparametric MRI) or transrectal ultrasound (TRUS) (discussed in Tests to Diagnose and Stage Prostate Cancer5)

(If the initial abnormal test was a DRE, the next step is typically to get a PSA blood test (and possibly other tests, such as a TRUS).)

Getting a prostate biopsy

For some men, getting a prostate biopsy might be the best option, especially if the initial PSA level is high. A biopsy is a procedure in which small samples of the prostate are removed and then looked at under a microscope. This test is the only way to know for sure if a man has prostate cancer. If prostate cancer is found on a biopsy, this test can also help tell how likely it is that the cancer will grow and spread quickly.

For more details on the prostate biopsy and how it is done, see Tests to Diagnose and Stage Prostate Cancer6.

For more information about the possible results of a prostate biopsy, see the Prostate Pathology7 section of our website.

Hyperlinks

References
American Cancer Society
Recommendations for Prostate Cancer
Early Detection

The American Cancer Society (ACS) recommends that men have a chance to make an informed decision with their health care provider about whether to be screened for prostate cancer. The decision should be made after getting information about the uncertainties, risks, and potential benefits of prostate cancer screening1. Men should not be screened unless they have received this information. The discussion about screening should take place at:

- **Age 50 for men who are at average risk** of prostate cancer and are expected to live at least 10 more years.
• **Age 45 for men at high risk** of developing prostate cancer. This includes African Americans and men who have a first-degree relative (father or brother) diagnosed with prostate cancer at an early age (younger than age 65).

• **Age 40 for men at even higher risk** (those with more than one first-degree relative who had prostate cancer at an early age).

After this discussion, men who want to be screened should get the prostate-specific antigen (PSA) blood test. The digital rectal exam (DRE) may also be done as a part of screening. (See [Screening Tests for Prostate Cancer](#).)

If, after this discussion, a man is unable to decide if testing is right for him, the screening decision can be made by the health care provider, who should take into account the man’s general health preferences and values.

If no prostate cancer is found as a result of screening, the time between future screenings depends on the results of the PSA blood test:

- Men who choose to be tested who have a PSA of less than 2.5 ng/mL may only need to be retested every 2 years.
- Screening should be done yearly for men whose PSA level is 2.5 ng/mL or higher.

Because prostate cancer often grows slowly, men without symptoms of prostate cancer who do not have a 10-year life expectancy should not be offered testing since they are not likely to benefit. Overall health status, and not age alone, is important when making decisions about screening.

Even after a decision about testing has been made, the discussion about the pros and cons of testing should be repeated as new information about the benefits and risks of testing becomes available. Further discussions are also needed to take into account changes in a man’s health, values, and preferences.

Hyperlinks

References
Insurance Coverage for Prostate Cancer Screening

The American Cancer Society supports legislation assuring that men have insurance coverage for prostate screening exams. The Society recognizes that differing opinions exist as to whether screening for prostate cancer lowers the risk of dying from prostate cancer. Until such time when studies are conclusive, men, in consultation with their doctors, should be free to determine on an individual basis whether testing is appropriate. Prostate cancer screening should not be prevented because of the reimbursement limitations of health insurance plans.

The American Cancer Society does not recommend routine testing for prostate cancer\(^1\) for all men at this time because we believe proper pretest guidance and education is necessary. Doctors and other health care providers should offer information on the potential risks and benefits of prostate-specific antigen (PSA) testing to appropriate patients, allowing them to make an informed decision on testing.

State efforts to ensure prostate cancer screening coverage

States have passed laws on a variety of issues relating to prostate cancer, including:

- Assured health insurance coverage for prostate cancer screening
- Public education on prostate cancer
- Prostate cancer research funds

Many states have laws requiring private health insurers to cover tests to detect prostate
cancer, including the PSA test and digital rectal exam (DRE). Some states also assure that public employee benefit health plans provide coverage for prostate cancer screening tests. Most state laws assure annual coverage for men ages 50 and over and for high-risk men, ages 40 and over. "High-risk men" typically refers to African-American men and/or men with a family history of prostate cancer. Some states have slightly different coverage requirements. Laws on coverage vary from state to state, so check with your insurer or with your state insurance commissioner’s office to see what’s covered.

Medicare coverage

Medicare covers PSA blood test and a DRE once a year for all men with Medicare age 50 and over. There is no co-insurance and no Part B deductible for the PSA test. For other services (including a DRE), the beneficiary would pay 20% of the Medicare-approved amount after the yearly Part B deductible.

Hyperlinks

References

Last Medical Review: August 1, 2019 Last Revised: August 1, 2019

Signs and Symptoms of Prostate Cancer

Most prostate cancers are found early, through screening. Early prostate cancer usually causes no symptoms. More advanced prostate cancers can sometimes cause symptoms, such as:
• Problems urinating, including a slow or weak urinary stream or the need to urinate more often, especially at night
• Blood in the urine or semen
• Trouble getting an erection (erectile dysfunction or ED)
• Pain in the hips, back (spine), chest (ribs), or other areas from cancer that has spread to bones
• Weakness or numbness in the legs or feet, or even loss of bladder or bowel control from cancer pressing on the spinal cord

Most of these problems are more likely to be caused by something other than prostate cancer. For example, trouble urinating is much more often caused by benign prostatic hyperplasia (BPH), a non-cancerous growth of the prostate. Still, it’s important to tell your health care provider if you have any of these symptoms so that the cause can be found and treated, if needed. Some men might need more tests to check for prostate cancer.

Hyperlinks

Last Medical Review: August 1, 2019 Last Revised: August 1, 2019

Tests to Diagnose and Stage Prostate Cancer

Most prostate cancers are first found as a result of screening with a prostate-specific antigen (PSA) blood test or a digital rectal exam (DRE). (See Screening Tests for Prostate Cancer.) Early prostate cancers usually don’t cause symptoms, but more advanced cancers are sometimes first found because of symptoms they cause.

If prostate cancer is suspected based on results of screening tests or symptoms, tests will be needed to be sure. If you’re seeing your primary care doctor, you might be referred to a urologist, a doctor who treats cancers of the genital and urinary tract, including the prostate.
The actual diagnosis of prostate cancer can only be made with a prostate biopsy (discussed below).

Medical history and physical exam

If your doctor suspects you might have prostate cancer, he or she will ask you about any symptoms you are having, such as any urinary or sexual problems, and how long you have had them. You might also be asked about possible risk factors, including your family history.

Your doctor will also examine you. This might include a digital rectal exam (DRE), during which the doctor inserts a gloved, lubricated finger into your rectum to feel for any bumps or hard areas on the prostate that might be cancer. If you do have cancer, the DRE can sometimes help tell if it’s only on one side of the prostate, if it’s on both sides, or if it’s likely to have spread beyond the prostate to nearby tissues. Your doctor may also examine other areas of your body.

After the exam, your doctor might then order some tests.

PSA blood test

Prostate-specific antigen (PSA) is a protein made by cells in the prostate gland (both normal cells and cancer cells). PSA is mostly in semen, but a small amount is also in the blood.

Use in men who might have prostate cancer

The PSA blood test is used mainly to screen for prostate cancer in men without symptoms. It’s also one of the first tests done in men who have symptoms that might be caused by prostate cancer.

PSA in the blood is measured in units called nanograms per milliliter (ng/mL). The chance of having prostate cancer goes up as the PSA level goes up, but there is no set cutoff point that can tell for sure if a man does or doesn’t have prostate cancer. Many doctors use a PSA cutoff point of 4 ng/mL or higher when deciding if a man might need further testing, while others might recommend it starting at a lower level, such as 2.5 or 3.

- Most men without prostate cancer have PSA levels under 4 ng/mL of blood. Still, a level below 4 is not a guarantee that a man doesn’t have cancer.
• Men with a PSA level between 4 and 10 (often called the “borderline range”) have about a 1 in 4 chance of having prostate cancer.
• If the PSA is more than 10, the chance of having prostate cancer is over 50%.

If your PSA level is high, you might need further tests to look for prostate cancer.

To learn more about how the PSA test is used to look for cancer, including factors that can affect PSA levels, special types of PSA tests, and what the next steps might be if you have an abnormal PSA level, see Screening Tests for Prostate Cancer.

Use in men already diagnosed with prostate cancer

The PSA test can also be useful if you have already been diagnosed with prostate cancer.

• In men just diagnosed with prostate cancer, the PSA level can be used together with physical exam results and tumor grade (determined on the biopsy, described further on) to help decide if other tests (such as CT scans or bone scans) are needed.
• The PSA level is used to help determine the stage of your cancer. This can affect your treatment options, since some treatments (such as surgery and radiation) are not likely to be helpful if the cancer has spread to other parts of the body.
• PSA tests are often an important part of determining how well treatment is working, as well as in watching for a possible recurrence of the cancer after treatment (see Following PSA Levels During and After Treatment).

Prostate biopsy

If the results of a PSA blood test, DRE, or other tests suggest that you might have prostate cancer, your will most likely need a prostate biopsy.

A biopsy is a procedure in which small samples of the prostate are removed and then looked at with a microscope. A core needle biopsy is the main method used to diagnose prostate cancer. It is usually done by a urologist.

During the biopsy, the doctor usually looks at the prostate with an imaging test such as transrectal ultrasound (TRUS) or MRI, or a ‘fusion’ of the two (all discussed below). The doctor quickly inserts a thin, hollow needle into the prostate. This is done either through
the wall of the rectum (a transrectal biopsy) or through the skin between the scrotum and anus (a transperineal biopsy). When the needle is pulled out it removes a small cylinder (core) of prostate tissue. This is repeated several times. Most often the doctor will take about 12 core samples from different parts of the prostate.

Though the procedure sounds painful, each biopsy usually causes only some brief discomfort because it is done with a special spring-loaded biopsy instrument. The device inserts and removes the needle in a fraction of a second. Most doctors who do the biopsy will numb the area first by injecting a local anesthetic alongside the prostate. You might want to ask your doctor if he or she plans to do this.

The biopsy itself takes about 10 minutes and is usually done in the doctor’s office. You will likely be given antibiotics to take before the biopsy and possibly for a day or 2 after to reduce the risk of infection.

For a few days after the procedure, you may feel some soreness in the area and might notice blood in your urine. You may also have some light bleeding from your rectum, especially if you have hemorrhoids. Many men notice blood in their semen or have rust colored semen, which can last for several weeks after the biopsy, depending on how often you ejaculate.

Getting the results of the biopsy

Your biopsy samples will be sent to a lab, where they will be looked at with a microscope to see if they contain cancer cells. Getting the results (in the form of a pathology report) usually takes at least 1 to 3 days, but it can sometimes take longer. The results might be reported as:

- **Positive for cancer**: Cancer cells were seen in the biopsy samples.
- **Negative for cancer**: No cancer cells were seen in the biopsy samples.
- **Suspicious**: Something abnormal was seen, but it might not be cancer. (Different types of suspicious results are discussed below.)

If the biopsy is negative

If the prostate biopsy results are negative (that is, if they don’t show cancer), and the chance that you have prostate cancer isn’t very high based on your PSA level and other tests, you might not need any more tests, other than repeat PSA tests (and possibly DREs) sometime later.
But even if many samples are taken, biopsies can still sometimes miss a cancer if none of the biopsy needles pass through it. This is known as a false-negative result. If your doctor still strongly suspects you have prostate cancer (because your PSA level is very high, for example), your doctor might suggest:

- **Getting other lab tests** (of blood, urine, or the prostate biopsy samples) to help get a better idea of whether or not you might have prostate cancer. Examples of such tests include the Prostate Health Index (PHI), 4Kscore test, PCA3 tests (such as Progensa), and ConfirmMDx. These tests are discussed in [What’s New in Prostate Cancer Research]?10

- **Getting a repeat prostate biopsy.** This might include getting additional samples of parts of the prostate not biopsied the first time, or using imaging tests such as MRI (described below) to look more closely for abnormal areas to target.

Prostate cancer grade (Gleason score or Grade Group)

If prostate cancer is found on a biopsy, it will be assigned a grade. The grade of the cancer is based on how abnormal the cancer looks under the microscope. Higher grade cancers look more abnormal, and are more likely to grow and spread quickly. There are 2 main ways to describe the grade of a prostate cancer.

Gleason score

The Gleason system, which has been in use for many years, assigns grades based on how much the cancer looks like normal prostate tissue.

- If the cancer looks a lot like normal prostate tissue, a grade of 1 is assigned.
- If the cancer looks very abnormal, it is given a grade of 5.
- Grades 2 through 4 have features in between these extremes.

Almost all cancers are grade 3 or higher; grades 1 and 2 are not often used.

Since prostate cancers often have areas with different grades, a grade is assigned to the 2 areas that make up most of the cancer. These 2 grades are added to yield the **Gleason score** (also called the Gleason sum).

The first number assigned is the grade that is most common in the tumor. For example, if the Gleason score is written as 3+4=7, it means most of the tumor is grade 3 and less is grade 4, and they are added for a Gleason score of 7.
Although most often the Gleason score is based on the 2 areas that make up most of the cancer, there are some exceptions when a biopsy sample has either a lot of high-grade cancer or there are 3 grades including high-grade cancer. In these cases, the way the Gleason score is determined is modified to reflect the aggressive (fast-growing) nature of the cancer.

In theory, the Gleason score can be between 2 and 10, but scores below 6 are rarely used.

Based on the Gleason score, prostate cancers are often divided into 3 groups:

- Cancers with a **Gleason score of 6 or less** may be called **well-differentiated** or **low-grade**.
- Cancers with a **Gleason score of 7** may be called **moderately-differentiated** or **intermediate-grade**.
- Cancers with **Gleason scores of 8 to 10** may be called **poorly-differentiated** or **high-grade**.

Grade Groups

In recent years, doctors have come to realize that the Gleason score might not always be the best way to describe the grade of the cancer, for a couple of reasons:

- Prostate cancer outcomes can be divided into more than just the 3 groups mentioned above. For example, men with a Gleason score 3+4=7 cancer tend to do better than those with a 4+3=7 cancer. And men with a Gleason score 8 cancer tend to do better than those with a Gleason score of 9 or 10.
- The scale of the Gleason score can be misleading for patients. For example, a man with a Gleason score 6 cancer might assume that his cancer is in the middle of the range of grades (which in theory go from 2 to 10), even though grade 6 cancers are actually the lowest grade seen in practice. This assumption might lead a man to think his cancer is more likely to grow and spread quickly than it really is, which might affect his decisions about treatment.

Because of this, doctors have developed **Grade Groups**, ranging from 1 (most likely to grow and spread slowly) to 5 (most likely to grow and spread quickly):

- Grade Group 1 = Gleason 6 (or less)
- Grade Group 2 = Gleason 3+4=7
- Grade Group 3 = Gleason 4+3=7
- Grade Group 4 = Gleason 8
- Grade Group 5 = Gleason 9-10

The Grade Groups will likely replace the Gleason score over time, but currently you might see either one (or both) on a biopsy pathology report.

Other information in a pathology report

Along with the grade of the cancer (if it is present), the pathology report\(^{11}\) often contains other information about the cancer, such as:

- The number of biopsy core samples that contain cancer (for example, “7 out of 12”)
- The percentage of cancer in each of the cores
- Whether the cancer is on one side (left or right) of the prostate or on both sides (bilateral)

Suspicious results

Sometimes when the prostate cells are seen, they don’t look like cancer, but they’re not quite normal, either.

Prostatic intraepithelial neoplasia (PIN): In PIN, there are changes in how the prostate cells look, but the abnormal cells don’t look like they’ve grown into other parts of the prostate (like cancer cells would). PIN is often divided into 2 groups:

- **Low-grade PIN:** The patterns of prostate cells appear almost normal.
- **High-grade PIN:** The patterns of cells look more abnormal.

Many men begin to develop **low-grade PIN** at an early age, but low-grade PIN is not thought to be related to prostate cancer risk. If low-grade PIN is reported on a prostate biopsy, the follow-up for patients is usually the same as if nothing abnormal was seen.

If **high-grade PIN** is found on a biopsy, there is a greater chance that you might develop prostate cancer over time. This is why doctors often watch men with high-grade PIN carefully and may advise another prostate biopsy (or lab tests to help determine the risk of having cancer, such as the Prostate Health Index (PHI), 4Kscore test, PCA3 tests (such as Progensa), or ConfirmMDx). This is especially true if high-grade PIN is
found in different parts of the prostate (multifocal high-grade PIN), or if the original biopsy did not take samples from all parts of the prostate.

Atypical small acinar proliferation (ASAP): This might also be called glandular atypia or atypical glandular proliferation. It might also just be reported as “suspicious for cancer.” All of these terms mean that the cells look like they might be cancer when seen with the microscope, but there are too few of them to be sure. If one of these terms is used, there’s a high chance that there is also cancer in the prostate, which is why many doctors recommend repeating the biopsy within a few months.

Proliferative inflammatory atrophy (PIA): In PIA, the prostate cells look smaller than normal, and there are signs of inflammation in the area. PIA is not cancer, but researchers believe that PIA may sometimes lead to high-grade PIN or to prostate cancer directly.

For more information about how prostate biopsy results are reported, see the Prostate Pathology section of our website.

Genetic testing for some men with prostate cancer

Some doctors now recommend that some men with prostate cancer be tested to look for certain inherited gene changes. This includes men in whom a family cancer syndrome (such as a BRCA gene mutation or Lynch syndrome) is suspected, as well as men with prostate cancer that has certain high-risk features or that has spread to other parts of the body. Talk to your doctor about the possible pros, cons, and limitations of such testing.

Imaging tests for prostate cancer

Imaging tests use x-rays, magnetic fields, sound waves, or radioactive substances to create pictures of the inside of your body. One or more imaging tests might be used:

- To look for cancer in the prostate
- To help the doctor see the prostate during certain procedures (such as a prostate biopsy or certain types of prostate cancer treatment)
- To look for spread of prostate cancer to other parts of the body

Which tests you might need will depend on the situation. For example, a prostate biopsy is typically done with transrectal ultrasound (TRUS) and/or MRI to help guide the biopsy. If you are found to have prostate cancer, you might need imaging tests of other
parts of your body to look for possible cancer spread. (Men with a normal DRE result, a low PSA, and a low Gleason score may not need any other tests because the chance that the cancer has spread is so low.)

The imaging tests used most often to look for prostate cancer spread include:

Transrectal ultrasound (TRUS)

For this test, a small probe about the width of a finger is lubricated and placed in your rectum. The probe gives off sound waves that enter the prostate and create echoes. The probe picks up the echoes, and a computer turns them into a black and white image of the prostate.

The procedure often takes less than 10 minutes and is done in a doctor’s office or outpatient clinic. You will feel some pressure when the probe is inserted, but it is usually not painful. The area may be numbed before the procedure.

TRUS might be used in different situations:

- It is sometimes used to look for suspicious areas in the prostate in men who have an abnormal DRE or PSA test result (although it can miss some cancers).
- It can be used during a **prostate biopsy** to guide the needles into the correct area of the prostate.
- It can be used to measure the size of the prostate gland, which can help determine the **PSA density** (described in [Screening Tests for Prostate Cancer](#)).
- It can be used as a guide during some forms of **treatment** such as **brachytherapy** (internal radiation therapy) or **cryotherapy**.

Newer forms of TRUS, such as color Doppler ultrasound, might be even more helpful in some situations. (See [What’s New in Prostate Cancer Research?](#))

Magnetic resonance imaging (MRI)

MRI scans create detailed images of soft tissues in the body using radio waves and strong magnets. MRI scans can give doctors a very clear picture of the prostate and nearby areas. A contrast material called gadolinium may be injected into a vein before the scan to better see details.

MRI might be used in different situations:
• It can be used to help determine if a man with an abnormal screening test or with symptoms that might be from prostate cancer should get a prostate biopsy. (The type of MRI often used for this, known as multiparametric MRI, is described below.)

• If a prostate biopsy is planned, an MRI might be done to help locate and target areas of the prostate that are most likely to contain cancer. This is often done as an MRI/ultrasound fusion biopsy, which is described below.

• MRI can be used during a prostate biopsy to help guide the needles into the prostate.

• If prostate cancer has been found, MRI can be done to help determine the extent (stage) of the cancer. MRI scans can show if the cancer has spread outside the prostate into the seminal vesicles or other nearby structures. This can be very important in determining your treatment options. But MRI scans aren’t usually needed for newly diagnosed prostate cancers that are likely to be confined to the prostate based on other factors.

To improve the accuracy of the MRI, you might have a probe, called an endorectal coil, placed inside your rectum for the scan. This can be uncomfortable for some men. If needed, you can be given medicine to make you feel sleepy (sedation).

Multiparametric MRI: This newer MRI technique can be used to help better define possible areas of cancer in the prostate, as well as to get an idea of how quickly a cancer might grow. It can also help show if the cancer has grown outside the prostate or spread to other parts of the body. For this test, a standard MRI is done to look at the anatomy of the prostate, and then at least one other type of MRI (such as diffusion weighted imaging [DWI], dynamic contrast enhanced [DCE] MRI, or MR spectroscopy) is done to look at other parameters of the prostate tissue. The results of the different scans are then compared to help find abnormal areas.

MRI/ultrasound fusion-guided prostate biopsy: In this approach, a man gets an MRI scan a few days or weeks before the biopsy to look for abnormal areas in the prostate. During the biopsy itself, TRUS is used to view to prostate, and a special computer program is used to fuse the MRI and TRUS images on a computer screen. This can help ensure the doctor gets biopsy samples from any suspicious areas seen on the images.

Bone scan

If prostate cancer spreads to distant parts of the body, it often goes to the bones first. A
bone scan19 can help show if cancer has reached the bones.

For this test, you are injected with a small amount of low-level radioactive material, which settles in damaged areas of bone throughout the body. A special camera detects the radioactivity and creates a picture of your skeleton.

A bone scan might suggest cancer in the bone, but to make an accurate diagnosis, other tests such as plain x-rays, CT or MRI scans, or even a bone biopsy might be needed.

Computed tomography (CT) scan

A CT scan20 uses x-rays to make detailed, cross-sectional images of your body. This test isn’t often needed for newly diagnosed prostate cancer if the cancer is likely to be confined to the prostate based on other findings (DRE result, PSA level, and Gleason score). Still, it can sometimes help tell if prostate cancer has spread into nearby lymph nodes. If your prostate cancer has come back after treatment, the CT scan can often tell if it is growing into other organs or structures in your pelvis.

CT scans are not as useful as magnetic resonance imaging (MRI) for looking at the prostate gland itself.

Lymph node biopsy

In a lymph node biopsy, also known as lymph node dissection or lymphadenectomy, one or more lymph nodes21 are removed to see if they have cancer cells. This isn’t done very often for prostate cancer, but it might be used to find out if the cancer has spread from the prostate to nearby lymph nodes.

Biopsy during surgery to treat prostate cancer

If there is more than a very small chance that the cancer might have spread (based on factors such as a high PSA level or a high Gleason score), the surgeon may remove lymph nodes in the pelvis during the same operation as the removal of the prostate, which is known as a radical prostatectomy (see Surgery for Prostate Cancer22).

The lymph nodes and the prostate are then sent to the lab to be looked at. The lab results are usually available several days after surgery.

Lymph node biopsy as a separate procedure
A lymph node biopsy is rarely done as a separate procedure. It's sometimes used when a radical prostatectomy isn't planned (such as for some men who choose treatment with radiation therapy\(^{23}\)), but when it's still important to know if the lymph nodes contain cancer.

Most often, this is done as a **needle biopsy**. To do this, the doctor uses an image (such as from an MRI or CT scan) to guide a long, hollow needle through the skin in the lower abdomen and into an enlarged node. The skin is numbed with local anesthesia before the needle is inserted to take a small tissue sample. The sample is then sent to the lab and looked at for cancer cells.

Hyperlinks

9. www.cancer.org/treatment/understanding-your-diagnosis/tests/understanding-your-pathology-report.html
18. www.cancer.org/treatment/understanding-your-diagnosis/tests/mri-for-cancer.html

References

Prostate Cancer Stages and Other Ways to Assess Risk

After a man is diagnosed with prostate cancer, doctors will try to figure out if it has spread, and if so, how far. This process is called staging. The stage of a prostate cancer describes how much cancer is in the body. It helps determine how serious the cancer is and how best to treat it. Doctors also use a cancer's stage when talking about survival statistics.

The stage is based on tests described in Tests to Diagnose and Stage Prostate Cancer, including the blood PSA level and prostate biopsy results.

The AJCC TNM staging system

A staging system is a standard way for the cancer care team to describe how far a cancer has spread. The most widely used staging system for prostate cancer is the AJCC (American Joint Committee on Cancer) TNM system, which was most recently updated in 2018.

The TNM system for prostate cancer is based on 5 key pieces of information:

- The extent of the main (primary) tumor (T category)*
- Whether the cancer has spread to nearby lymph nodes (N category)
- Whether the cancer has spread (metastasized) to other parts of the body (M category)
- The PSA level at the time of diagnosis
- The Grade Group (based on the Gleason score), which is a measure of how likely the cancer is to grow and spread quickly. This is determined by the results of the prostate biopsy (or surgery).

*There are 2 types of T categories for prostate cancer:

- The clinical T category (written as cT) is your doctor’s best estimate of the extent of your disease, based on the results of the physical exam (including a digital rectal exam) and prostate biopsy, and any imaging tests you have had.
- If you have surgery to remove your prostate, your doctors can also determine the pathologic T category (written as pT). The pathologic T is likely to be more
accurate than the clinical T, as it is done after all of your prostate has been examined in the lab.

Numbers or letters after T, N, and M provide more details about each of these factors. Higher numbers mean the cancer is more advanced. Once the T, N, and M categories have been determined, this information is combined (along with the Grade Group and PSA level if they are available) in a process called stage grouping to get the overall stage of the cancer.

The main stages of prostate cancer range from I (1) through IV (4). Some stages are split further (A, B, etc). As a rule, the lower the number, the less the cancer has spread. A higher number, such as stage IV, means cancer has spread more. And within a stage, an earlier letter means a lower stage. Although each person’s cancer experience is unique, cancers with similar stages tend to have a similar outlook and are often treated in much the same way.

Stages of prostate cancer

<table>
<thead>
<tr>
<th>AJCC Stage</th>
<th>Stage grouping</th>
<th>Stage description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>cT1, N0, M0</td>
<td>The doctor can’t feel the tumor or see it with an imaging test such as transrectal ultrasound (it was either found during a transurethral resection of the prostate (TURP) or was diagnosed by needle biopsy done for a high PSA) [cT1]. The cancer has not spread to nearby lymph nodes [N0] or elsewhere in the body [M0]. The Grade Group is 1, and the PSA level is less than 10.</td>
</tr>
<tr>
<td>OR</td>
<td>cT2a, N0, M0</td>
<td>The tumor can be felt by digital rectal exam or seen with imaging such as transrectal ultrasound and is in one half or less of only one side (left or right) of the prostate [cT2a]. The cancer has not spread to nearby lymph nodes [N0] or elsewhere in the body [M0]. The Grade Group is 1, and the PSA level is less than 10.</td>
</tr>
<tr>
<td>OR</td>
<td>pT2, N0, M0</td>
<td>The prostate has been removed with surgery, and the tumor was still only in the prostate [pT2]. The cancer...</td>
</tr>
<tr>
<td>Grade Group 1 (Gleason score 6 or less)</td>
<td>PSA less than 10</td>
<td>has not spread to nearby lymph nodes [N0] or elsewhere in the body [M0]. The Grade Group is 1, and the PSA level is less than 10.</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>cT1, N0, M0</td>
<td>Grade Group 1 (Gleason score 6 or less)</td>
<td>The doctor can’t feel the tumor or see it with imaging such as transrectal ultrasound (it was either found during a transurethral resection of the prostate (TURP)(^9) or was diagnosed by needle biopsy done for a high PSA level) [cT1]. The cancer has not spread to nearby lymph nodes [N0] or elsewhere in the body [M0]. The Grade Group is 1. The PSA level is at least 10 but less than 20.</td>
</tr>
</tbody>
</table>
| OR | cT2a or pT2, N0, M0 | The tumor can be felt by digital rectal exam or seen with imaging such as transrectal ultrasound and is in one half or less of only one side (left or right) of the prostate [cT2a]. OR the prostate has been removed with surgery, and the tumor was still only in the prostate [pT2]. The cancer has not spread to nearby lymph nodes [N0] or elsewhere in the body [M0]. The Grade Group is 1. The PSA level is at least 10 but less than 20.

<table>
<thead>
<tr>
<th>Grade Group 1 (Gleason score 6 or less)</th>
<th>PSA at least 10 but less than 20</th>
<th>The tumor can be felt by digital rectal exam or seen with imaging such as transrectal ultrasound. It is in more than half of one side of the prostate [cT2b] or it is in both sides of the prostate [cT2c]. The cancer has not spread to nearby lymph nodes [N0] or elsewhere in the body [M0]. The Grade Group is 1. The PSA level is less than 20.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 or T2, N0, M0</td>
<td>Grade Group 2 (Gleason score 3+4=7)</td>
<td>The cancer has not yet spread outside the prostate. It might (or might not) be felt by digital rectal exam or seen with imaging such as transrectal ultrasound [T1 or T2]. The cancer has not spread to nearby lymph nodes [N0] or elsewhere in the body [M0]. The Grade Group is 2. The PSA level is less than 20.</td>
</tr>
<tr>
<td>Staging</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>IIIC</td>
<td>T1 or T2, N0, M0
Grade Group 3 or 4 (Gleason score 4+3=7 or 8)
PSA less than 20
The cancer has not yet spread outside the prostate. It might (or might not) be felt by digital rectal exam or seen with imaging such as transrectal ultrasound [T1 or T2]. The cancer has not spread to nearby lymph nodes [N0] or elsewhere in the body [M0]. The Grade Group is 3 or 4. The PSA level is less than 20.</td>
<td></td>
</tr>
<tr>
<td>IIIA</td>
<td>T1 or T2, N0, M0
Grade Group 1 to 4 (Gleason score 8 or less)
PSA at least 20
The cancer has not yet spread outside the prostate. It might (or might not) be felt by digital rectal exam or seen with imaging such as transrectal ultrasound [T1 or T2]. The cancer has not spread to nearby lymph nodes [N0] or elsewhere in the body [M0]. The Grade Group is 1 to 4. The PSA level is at least 20.</td>
<td></td>
</tr>
<tr>
<td>IIIB</td>
<td>T3 or T4, N0, M0
Grade Group 1 to 4 (Gleason score 8 or less)
Any PSA
The cancer has grown outside the prostate and might have spread to the seminal vesicles [T3], or it has spread into other tissues next to the prostate, such as the urethral sphincter (muscle that helps control urination), rectum, bladder, and/or the wall of the pelvis [T4]. It has not spread to nearby lymph nodes [N0] or elsewhere in the body [M0]. The Grade Group is 1 to 4, and the PSA can be any value.</td>
<td></td>
</tr>
<tr>
<td>IIIC</td>
<td>Any T, N0, M0
Grade Group 5 (Gleason score 9 or 10)
Any PSA
The cancer might or might not be growing outside the prostate and into nearby tissues [any T]. It has not spread to nearby lymph nodes [N0] or elsewhere in the body [M0]. The Grade Group is 5. The PSA can be any value.</td>
<td></td>
</tr>
<tr>
<td>IVA</td>
<td>Any T, N1, M0
Any Grade Group
Any PSA
The tumor might or might not be growing into tissues near the prostate [any T]. The cancer has spread to nearby lymph nodes [N1] but has not spread elsewhere in the body [M0]. The Grade Group can be any value, and the PSA can be any value.</td>
<td></td>
</tr>
</tbody>
</table>
| IVA | **Any T, any N, M1**
The cancer might or might not be growing into tissues
IVB Any Grade Group Any PSA

<table>
<thead>
<tr>
<th>Grade Group</th>
<th>Any Grade Group</th>
<th>Any PSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVB</td>
<td>near the prostate [any T] and might or might not have spread to nearby lymph nodes [any N]. It has spread to other parts of the body, such as distant lymph nodes, bones, or other organs [M1]. The Grade Group can be any value, and the PSA can be any value.</td>
<td></td>
</tr>
</tbody>
</table>

Prostate cancer staging can be complex. If you have any questions about your stage, please ask someone on your cancer care team to explain it to you in a way you understand.

While the stage of a prostate cancer can help give an idea of how serious the cancer is likely to be, doctors are now looking for other ways to tell how likely a prostate cancer is to grow and spread, which might also help determine a man’s best treatment options.

Prostate cancer risk groups

For cancers that have not spread (stage I to III cancers), many doctors now use features of the cancer (such as the T category, initial PSA level, and prostate biopsy results) to divide them into the following risk groups:

- Very low
- Low
- Intermediate (favorable or unfavorable)
- High
- Very high

The risk group can help determine if any further tests should be done, as well as help guide treatment options.

Other ways to assess risk from prostate cancer

Doctors are still learning about the best use of these types of tests and predictive models. If your doctor suggests using one of these ways to help determine your treatment options, have them explain what it can tell you, as well as how accurate it’s likely to be.

Genomic and proteomic tests

Another way to get an idea of how quickly a prostate cancer might grow or spread is with lab tests that look at which genes (or proteins) are active inside the prostate cancer
cells. Examples of such tests include Oncotype DX Prostate, Prolaris, ProMark, and Decipher. (For more on these tests, see What’s New in Prostate Cancer Research?\(^ {10} \))

Risk assessment models

Doctors are also studying a number of risk assessment models, which take into account factors such as a man’s overall health and the results of certain lab tests, among other things.

Hyperlinks

References

Survival Rates for Prostate Cancer

Survival rates can give you an idea of what percentage of people with the same type and stage of cancer are still alive a certain amount of time (usually 5 years) after they were diagnosed. These rates can’t tell you how long you will live, but they may help give you a better understanding of how likely it is that your treatment will be successful.

Keep in mind that survival rates are estimates and are often based on previous outcomes of large numbers of people who had a specific cancer, but they can’t predict what will happen in any particular person’s case. These statistics can be confusing and may lead you to have more questions. Talk with your doctor about how these numbers may apply to you, as he or she is familiar with your situation.

What is a 5-year relative survival rate?

A relative survival rate compares men with the same type and stage of prostate cancer to men in the overall population. For example, if the 5-year relative survival rate for a specific stage of prostate cancer is 90%, it means that men who have that cancer are, on average, about 90% as likely as men who don’t have that cancer to live for at least 5 years after being diagnosed.

Where do these numbers come from?

The American Cancer Society relies on information from the SEER (Surveillance, Epidemiology, and End Results) database, maintained by the National Cancer Institute (NCI), to provide survival statistics for different types of cancer.

The SEER database tracks 5-year relative survival rates for prostate cancer in the
United States, based on how far the cancer has spread. The SEER database, however, does not group cancers by AJCC TNM stages\(^1\) (stage 1, stage 2, stage 3, etc.). Instead it groups cancers into localized, regional, and distant stages.

- **Localized**: There is no sign that the cancer has spread outside the prostate.
- **Regional**: The cancer has spread outside the prostate to nearby structures or lymph nodes.
- **Distant**: The cancer has spread to parts of the body farther from the prostate, such as the lungs, liver, or bones.

Prostate cancer 5-year relative survival rates

These numbers are based on men diagnosed with prostate cancer between 2008 and 2014.

<table>
<thead>
<tr>
<th>SEER Stage</th>
<th>5-year Relative Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localized</td>
<td>Nearly 100%</td>
</tr>
<tr>
<td>Regional</td>
<td>Nearly 100%</td>
</tr>
<tr>
<td>Distant</td>
<td>30%</td>
</tr>
<tr>
<td>All SEER stages combined</td>
<td>98%</td>
</tr>
</tbody>
</table>

Understanding the numbers

- **These numbers apply only to the stage of the cancer when it is first diagnosed.** They do not apply later on if the cancer grows, spreads, or comes back after treatment.
- **These numbers don’t take everything into account.** Survival rates are grouped based on how far the cancer has spread, but your age, overall health, test results such as the PSA level and Grade Group\(^2\) of the cancer, how well the cancer responds to treatment, PSA level, grade group, and other factors can also affect your outlook.
- **Men now being diagnosed with prostate cancer may have a better outlook than these numbers show.** Treatments improve over time, and these numbers are based on men who were diagnosed and treated at least five years earlier.
Hyperlinks

References

Questions To Ask About Prostate Cancer

It’s important to have honest, open discussions with your cancer care team. You should feel free to ask any question, no matter how small it might seem. Here are some questions you might want to ask:

When you’re told you have prostate cancer

- What are the chances that the cancer has spread beyond my prostate? If so, is it still curable?
- Do I need any other tests before we decide on treatment?
- Should I see any other types of doctors before deciding on treatment?
• What is the clinical stage\(^2\) and grade (Gleason score or Grade Group)\(^3\) of my cancer? What do those mean to me?
• If I’m concerned about the costs and insurance coverage\(^4\) for my diagnosis and treatment, who can help me?

When deciding on a treatment plan

• How likely is my cancer to cause problems if I’m not treated right away?
• Should I consider watchful waiting or active surveillance\(^5\) as an option? Why or why not?
• Do you recommend a radical prostatectomy\(^6\) or radiation therapy\(^7\)? Why or why not?
• Is laparoscopic or robot-assisted prostatectomy\(^8\) an option for me?
• What types of radiation therapy might work best for me?
• What other treatment(s)\(^9\) might be right for me? Why?
• Am I eligible for any clinical trials\(^10\)?
• What risks or side effects should I expect from my treatment options?
• What are the chances that I will have problems with incontinence or impotence?
• What are the chances that I will have other urinary or rectal problems?
• If these side effects happen, are they treatable?
• How quickly do I need to decide on treatment?
• What should I do to be ready for treatment?
• How long will treatment last? What will it be like? Where will it be done?
• How might treatment affect my daily activities?
• What are the chances my cancer will come back with the treatment plans we have discussed? What would be our next step if this happened?

During treatment

Once treatment begins, you’ll need to know what to expect and what to look for. Not all of these questions may apply to you, but getting answers to the ones that do may be helpful.

• How will we know if the treatment is working?
• Is there anything I can do to help manage side effects\(^11\)?
• What symptoms or side effects should I tell you about right away?
• How can I reach you or someone on your team on nights, holidays, or weekends?
• Do I need to change what I eat during treatment? Are there any limits on what I can do?
• Do you know of any local or online support groups where I can talk to others who have been through this?
• Can you suggest a mental health professional I can see if I start to feel overwhelmed, depressed, or distressed?

After treatment

• Are there any limits on what I can do?
• What symptoms should I watch for?
• Should I exercise or follow a special diet?
• How often will I need to have follow-up exams and tests? What tests will I need?
• How will we know if the cancer has come back? What should I watch for?
• What will my options be if the cancer comes back?

Along with these examples, be sure to write down some questions of your own. For instance, you might want to ask about recovery time so that you can plan your work or activity schedule. If you still might want to have children, ask if there is a possibility you could become impotent or sterile.

Keep in mind that doctors aren’t the only ones who can give you information. Other health care professionals, such as nurses and social workers, can answer some of your questions. To find out more about speaking with your health care team, see The Doctor-Patient Relationship.

Hyperlinks

1. www.cancer.org/treatment/understanding-your-diagnosis/tests.html

Last Medical Review: August 1, 2019 Last Revised: August 1, 2019

Written by

The American Cancer Society medical and editorial content team (www.cancer.org/cancer/acs-medical-content-and-news-staff.html)

Our team is made up of doctors and oncology certified nurses with deep knowledge of cancer care as well as journalists, editors, and translators with extensive experience in medical writing.

American Cancer Society medical information is copyrighted material. For reprint requests, please see our Content Usage Policy (www.cancer.org/about-us/policies/content-usage.html).