What’s New in Osteosarcoma Research?

Research on osteosarcoma is now being done at medical centers, university hospitals, and other institutions across the world.

Understanding osteosarcoma

Researchers are learning more about what makes osteosarcoma cells different from normal bone cells. Knowing more about the changes in osteosarcoma cells might eventually result in specific treatments that exploit these changes. For example, researchers have found that osteosarcoma cells often have large amounts of a substance called GD2 on their surfaces. Drugs that target GD2 are already used to treat neuroblastoma (another cancer often seen in children), and are now being studied for use against osteosarcoma.

Tests of gene changes might help predict the behavior of each tumor, such as how they will respond to certain types of chemotherapy. These are now being tested in clinical trials.


Great advances have been made in treating osteosarcoma in the past few decades. Still, more research is needed to learn how best to manage hard-to-treat osteosarcomas, such as those that have already spread when they are found. Many clinical trials are focusing on treating osteosarcoma using a variety of strategies.


Doctors now have a much better understanding of the typical growth and spread of osteosarcomas than they did in the past. This, along with newer imaging tests that better define the extent of tumors, lets them plan surgeries to remove the cancer while sparing as much normal tissue as possible.

Some newer types of internal prostheses (man-made devices used to replace pieces of bone) can now be expanded without the need for more surgery. This is especially important for children, who in the past often needed several operations to replace the prosthesis with a larger one as they grew.

Radiation therapy

Osteosarcoma cells are not killed easily by radiation, so high doses are needed to have an effect. This has limited the use of radiation, because high doses can often cause unacceptable side effects. Newer forms of radiation let doctors focus the radiation more precisely on the tumor. This limits the doses received by nearby healthy tissues and may allow higher doses to be used on the tumor itself.

Intensity-modulated radiation therapy (IMRT) is an example of an advanced form of therapy. In this technique, radiation beams are shaped to fit the tumor and aimed at it from several angles. The intensity (strength) of the beams can also be adjusted to limit the dose reaching nearby normal tissues. This may let the doctor deliver a higher dose to the tumor. Many major hospitals and cancer centers now use IMRT, especially for tumors in hard-to-treat areas such as the spine or pelvis (hip bones).

Stereotactic radiosurgery (SRS) gives a large dose of radiation to a small tumor area, usually in one session. Once imaging tests show the exact location of the tumor , radiation is sent to the area from many different angles. The radiation is very precisely aimed so that it has as little effect on nearby tissues as possible. Sometimes doctors give the radiation in several smaller treatments to deliver the same or slightly higher dose. This is called fractionated stereotactic radiotherapy.

Another newer approach is to use radioactive particles instead of x-rays to deliver the radiation. One example is conformal proton beam therapy, which uses positive parts of atoms. Unlike x-rays, which release energy both before and after they hit their target, protons cause little damage to tissues they pass through and then release their energy after traveling a certain distance. Doctors can use this property to deliver more radiation to the tumor and to do less damage to nearby normal tissues. Proton beam therapy may be helpful for hard-to-treat tumors, such as those on the spine or pelvic bones. The machines needed to make protons are expensive, and there are only a handful of them in the United States at this time.

An even newer approach uses carbon ions, which are heavier than protons and cause more damage to cancer cells. This therapy is still in the earliest stages of development and is only available in a few centers around the world.

Doctors are also studying newer forms of radioactive drugs to treat osteosarcoma that has spread to many bones. One example is radium-223 (Xofigo), which works slightly differently than the other drugs now being used.


Clinical trials are being done to determine the best combinations of chemotherapy (chemo) drugs, as well as the best time to give them. Newer chemo drugs are being studied as well.

The lungs are the most common place for osteosarcoma to spread. Inhaled forms of some chemo drugs (such as cisplatin) are being studied for patients whose cancer has spread to their lungs. Early results have been promising.

Other forms of treatment

Chemo drugs are often effective against osteosarcoma, but sometimes they don’t work or the cancer becomes resistant to them over time. Researchers are studying newer types of drugs that attack osteosarcoma cells in different ways.

Immunotherapy drugs

Clinical trials are looking into ways to help the patient’s own immune system recognize and attack the osteosarcoma cells. For example:

  • Drugs called immune checkpoint inhibitors can sometimes help the body’s immune system recognize and attack cancer cells. These drugs have already been shown to be helpful against many types of cancer, and some of them are now being studied for use against osteosarcoma.
  • An experimental immune-modulating drug called muramyl tripeptide (also known as MTP or mifamurtide) has been shown to help some patients when added to chemotherapy.

Targeted therapy drugs

Doctors are also studying new medicines that target specific molecules on the cancer cells. These are known as targeted therapies. Some of these are man-made versions of immune system proteins, known as monoclonal antibodies. These antibodies attach to certain proteins on the cancer cell and help to stop the growth or kill the cancer cells. An example is dinutuximab (Unituxin), which attaches to GD2, a protein that is important for cancer cell growth.

Many other targeted drugs are being studied for use against osteosarcoma, including:

  • Drugs that affect a tumor’s ability to make new blood vessels, such as sorafenib (Nexavar) and pazopanib (Votrient).
  • Drugs that target the mTOR protein, such as temsirolimus (Torisel) and everolimus (Afinitor).

Drugs that affect the bones

Other drugs that target bone cells called osteoclasts may also be useful against osteosarcoma:

  • Bisphosphonates are a group of drugs that are already used to treat osteoporosis (bone thinning) and certain cancers that have spread to the bone. Some of these drugs, such as pamidronate and zoledronic acid, are now being studied for use in osteosarcoma as well.
  • Denosumab is a monoclonal antibody that targets the RANKL protein, which normally helps bones grow. It is now being studied for use against osteosarcoma.
  • Another drug that affects bones, known as saracatinib (AZD0530), is also being studied.

The American Cancer Society medical and editorial content team

Our team is made up of doctors and oncology certified nurses with deep knowledge of cancer care as well as journalists, editors, and translators with extensive experience in medical writing.

Anderson ME, Randall RL, Springfield DS, Gebhart MC. Chapter 92: Sarcomas of bone. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff’s Clinical Oncology. 5th ed. Philadelphia, Pa: Elsevier; 2014.

Gorlick R, Janeway K, Marina N. Chapter 34: Osteosarcoma. In: Pizzo PA, Poplack DG, eds. Principles and Practice of Pediatric Oncology. 7th ed. Philadelphia Pa: Lippincott Williams & Wilkins; 2016.

Janeway KA, Maki R. Chemotherapy and radiation therapy in the management of osteosarcoma. UpToDate. Accessed at www.uptodate.com/contents/chemotherapy-and-radiation-therapy-in-the-management-of-osteosarcoma on December 15, 2017.

Myers PA, Schwartz CL, Krailo MD, et al. Osteosarcoma: The addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol. 2008;26:633–638.

National Cancer Institute. Osteosarcoma and Malignant Fibrous Histiocytoma of Bone Treatment (PDQ®)–Health Professional Version. 2017. Accessed at www.cancer.gov/types/bone/hp/osteosarcoma-treatment-pdq on December 14, 2017.

National Comprehensive Cancer Network (NCCN). Practice Guidelines in Oncology: Bone Cancer. Version 1.2018. Accessed at www.nccn.org/professionals/physician_gls/pdf/bone.pdf on December 5, 2017.

O’Donnell RJ, DuBois SG, Haas-Kogan DA. Chapter 91: Sarcomas of bone. In: DeVita VT, Lawrence TS, Rosenberg SA, eds. DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. 10th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2014.

Roth M, Linkowski M, Tarim J, et al. Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer. 2014;120:548–554.

Last Medical Review: December 15, 2017 Last Revised: January 29, 2018

American Cancer Society medical information is copyrighted material. For reprint requests, please see our Content Usage Policy.